scholarly journals Distinct functions of transforming growth factor-β signaling in c-MYC driven hepatocellular carcinoma initiation and progression

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Haichuan Wang ◽  
Pan Wang ◽  
Meng Xu ◽  
Xinhua Song ◽  
Hong Wu ◽  
...  

AbstractDysregulation of transforming growth factor-beta (TGFβ) signaling has been implicated in liver carcinogenesis with both tumor promoting and inhibiting activities. Activation of the c-MYC protooncogene is another critical genetic event in hepatocellular carcinoma (HCC). However, the precise functional crosstalk between c-MYC and TGFβ signaling pathways remains unclear. In the present investigation, we investigated the expression of TGFβ signaling in c-MYC amplified human HCC samples as well as the mechanisms whereby TGFβ modulates c-Myc driven hepatocarcinogenesis during initiation and progression. We found that several TGFβ target genes are overexpressed in human HCCs with c-MYC amplification. In vivo, activation of TGFβ1 impaired c-Myc murine HCC initiation, whereas inhibition of TGFβ pathway accelerated this process. In contrast, overexpression of TGFβ1 enhanced c-Myc HCC progression by promoting tumor cell metastasis. Mechanistically, activation of TGFβ promoted tumor microenvironment reprogramming rather than inducing epithelial-to-mesenchymal transition during HCC progression. Moreover, we identified PMEPA1 as a potential TGFβ1 target. Altogether, our data underline the divergent roles of TGFβ signaling during c-MYC induced HCC initiation and progression.

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2207
Author(s):  
Kevin Bévant ◽  
Matthis Desoteux ◽  
Abdel Hady A. Abdel Wahab ◽  
Sabrin A. Abdel Wahab ◽  
Ayman Mohamed Metwally ◽  
...  

Transforming growth factor beta (TGFβ) plays a key role in liver carcinogenesis. However, its action is complex, since TGFβ exhibits tumor-suppressive or oncogenic properties, depending on the tumor stage. At an early stage TGFβ exhibits cytostatic features, but at a later stage it promotes cell growth and metastasis, as a potent inducer of epithelial to mesenchymal transition (EMT). Here, we evaluated DNA methylation as a possible molecular mechanism switching TGFβ activity toward tumor progression in hepatocellular carcinoma (HCC). We report that decitabine, a demethylating agent already used in the clinic for the treatment of several cancers, greatly impairs the transcriptional response of SNU449 HCC cells to TGFβ. Importantly, decitabine was shown to induce the expression of EMT-related transcription factors (e.g., SNAI1/2, ZEB1/2). We also report that the promoter of SNAI1 was hypomethylated in poor-prognosis human HCC, i.e., associated with high grade, high AFP level, metastasis and recurrence. Altogether, the data highlight an epigenetic control of several effectors of the TGFβ pathway in human HCC possibly involved in switching its action toward EMT and tumor progression. Thus, we conclude that epidrugs should be carefully evaluated for the treatment of HCC, as they may activate tumor promoting pathways.


Author(s):  
Haidi Hu ◽  
Shin-Rong Lee ◽  
Hualong Bai ◽  
Jianming Guo ◽  
Takuya Hashimoto ◽  
...  

Objective: Arteriovenous fistulae (AVF) are the optimal conduit for hemodialysis access but have high rates of primary maturation failure. Successful AVF maturation requires wall thickening with deposition of ECM (extracellular matrix) including collagen and fibronectin, as well as lumen dilation. TAK1 (TGFβ [transforming growth factor-beta]–activated kinase 1) is a mediator of noncanonical TGFβ signaling and plays crucial roles in regulation of ECM production and deposition; therefore, we hypothesized that TAK1 regulates wall thickening and lumen dilation during AVF maturation. Approach and Results: In both human and mouse AVF, immunoreactivity of TAK1, JNK (c-Jun N-terminal kinase), p38, collagen 1, and fibronectin was significantly increased compared with control veins. Manipulation of TAK1 in vivo altered AVF wall thickening and luminal diameter; reduced TAK1 function was associated with reduced thickness and smaller diameter, whereas activation of TAK1 function was associated with increased thickness and larger diameter. Arterial magnitudes of laminar shear stress (20 dyne/cm 2 ) activated noncanonical TGFβ signaling including TAK1 phosphorylation in mouse endothelial cells. Conclusions: TAK1 is increased in AVF, and TAK1 manipulation in a mouse AVF model regulates AVF thickness and diameter. Targeting noncanonical TGFβ signaling such as TAK1 might be a novel therapeutic approach to improve AVF maturation.


Sign in / Sign up

Export Citation Format

Share Document