Study on the mechanisms of the cross-resistance to TET, PIP, and GEN in Staphylococcus aureus mediated by the Rhizoma Coptidis extracts

Author(s):  
Sugui Lan ◽  
Zhirong Li ◽  
Aiqiu Su ◽  
Yanhong Peng ◽  
Yanke Liao ◽  
...  
2016 ◽  
Vol 7 ◽  
pp. 61-66 ◽  
Author(s):  
Dongmei Wu ◽  
Ruochen Lu ◽  
Yuquan Chen ◽  
Jie Qiu ◽  
Chaocheng Deng ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kanate Thitiananpakorn ◽  
Yoshifumi Aiba ◽  
Xin-Ee Tan ◽  
Shinya Watanabe ◽  
Kotaro Kiga ◽  
...  

Abstract We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we present a follow-up study aimed to investigate genetic determinants associated with the cross-resistance. Using 12 sets of paired DAP susceptible (DAPS) and DAP non-susceptible (DAPR) MRSA isolates from 12 patients who had DAP therapy, we (i) assessed susceptibility to DAP and VCM, (ii) compared whole-genome sequences, (iii) identified mutations associated with cross-resistance to DAP and VCM, and (iv) investigated the impact of altered gene expression and metabolic pathway relevant to the cross-resistance. We found that all 12 DAPR strains exhibiting cross-resistance to DAP and VCM carried mutations in mprF, while one DAPR strain with reduced susceptibility to only DAP carried a lacF mutation. On the other hand, among the 32 vancomycin-intermediate S. aureus (VISA) strains isolated from patients treated with VCM, five out of the 18 strains showing cross-resistance to DAP and VCM carried a mprF mutation, while 14 strains resistant to only VCM had no mprF mutation. Moreover, substitution of mprF in a DAPS strain with mutated mprF resulted in cross-resistance and vice versa. The elevated lysyl-phosphatidylglycerol (L-PG) production, increased positive bacterial surface charges and activated cell wall (CW) synthetic pathways were commonly found in both clinical isolates and laboratory-developed mutants that carry mprF mutations. We conclude that mprF mutation is responsible for the cross-resistance of MRSA to DAP and VCM, and treatment with DAP is more likely to select for mprF-mediated cross-resistance than is with VCM.


1968 ◽  
Vol 14 (7) ◽  
pp. 811-812
Author(s):  
Joseph T. Parisi ◽  
William J. Suling

Glycine-resistant variants of Staphylococcus aureus were obtained by successive cultivation of parent strains in increasing concentrations of glycine, and the minimal inhibitory concentrations of glycine of the parents and variants were determined. Although it has been reported that growth in glycine or certain antibiotics causes the accumulation of nucleotides involved in cell wall synthesis, a lack of cross resistance of the variants to some of these antibiotics was observed.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
James L. Kuhlen ◽  
Kimberly G. Blumenthal ◽  
Caroline L. Sokol ◽  
Diana S. Balekian ◽  
Ana A. Weil ◽  
...  

Abstract Validated skin testing is lacking for many drugs, including ceftaroline. The cross-reactivity between ceftaroline and other β-lactam antibiotics is unknown. We report a case of a pregnant patient with cystic fibrosis and multiple drug allergies who required ceftaroline for methicillin-resistant Staphylococcus aureus pneumonia and underwent an uncomplicated empiric desensitization procedure.


2020 ◽  
Vol 295 (39) ◽  
pp. 13664-13676 ◽  
Author(s):  
Stephanie Willing ◽  
Emma Dyer ◽  
Olaf Schneewind ◽  
Dominique Missiakas

Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus. FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.


2015 ◽  
Vol 40 (2) ◽  
pp. 55-59 ◽  
Author(s):  
Xiaokun Chen ◽  
Xugen Shi ◽  
Hongyan Wang ◽  
Jie Wang ◽  
Kaiyun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document