scholarly journals Cell-based analysis of CAD variants identifies individuals likely to benefit from uridine therapy

2020 ◽  
Vol 22 (10) ◽  
pp. 1598-1605 ◽  
Author(s):  
Francisco del Caño-Ochoa ◽  
Bobby G. Ng ◽  
Malak Abedalthagafi ◽  
Mohammed Almannai ◽  
Ronald D. Cohn ◽  
...  

Abstract Purpose Pathogenic autosomal recessive variants in CAD, encoding the multienzymatic protein initiating pyrimidine de novo biosynthesis, cause a severe inborn metabolic disorder treatable with a dietary supplement of uridine. This condition is difficult to diagnose given the large size of CAD with over 1000 missense variants and the nonspecific clinical presentation. We aimed to develop a reliable and discerning assay to assess the pathogenicity of CAD variants and to select affected individuals that might benefit from uridine therapy. Methods Using CRISPR/Cas9, we generated a human CAD-knockout cell line that requires uridine supplements for survival. Transient transfection of the knockout cells with recombinant CAD restores growth in absence of uridine. This system determines missense variants that inactivate CAD and do not rescue the growth phenotype. Results We identified 25 individuals with biallelic variants in CAD and a phenotype consistent with a CAD deficit. We used the CAD-knockout complementation assay to test a total of 34 variants, identifying 16 as deleterious for CAD activity. Combination of these pathogenic variants confirmed 11 subjects with a CAD deficit, for whom we describe the clinical phenotype. Conclusions We designed a cell-based assay to test the pathogenicity of CAD variants, identifying 11 CAD-deficient individuals who could benefit from uridine therapy.

2020 ◽  
Author(s):  
Francisco del Caño-Ochoa ◽  
Bobby G. Ng ◽  
Malak Abedalthagafi ◽  
Mohammed Almannai ◽  
Ronald D. Cohn ◽  
...  

ABSTRACTPurposePathogenic autosomal recessive variants in CAD, encoding the multienzymatic protein initiating pyrimidine de novo biosynthesis, cause a severe inborn metabolic disorder treatable with a dietary supplement of uridine. This condition is difficult to diagnose given the large size of CAD with over 1000 missense variants and the non-specific clinical presentation. We aimed to develop a reliable and discerning assay to assess the pathogenicity of CAD variants and to select affected individuals that might benefit from uridine therapy.MethodsUsing CRISPR/Cas9, we generated a human CAD-knockout cell line that requires uridine supplements for survival. Transient transfection of the knockout cells with recombinant CAD restores growth in absence of uridine. This system determines missense variants that inactivate CAD and do not rescue the growth phenotype.ResultsWe identified 25 individuals with biallelic variants in CAD and a phenotype consistent with a CAD deficit. We used the CAD-knockout complementation assay to test a total of 34 variants, identifying 16 as deleterious for CAD activity. Combination of these pathogenic variants confirmed 11 subjects with a CAD deficit, for whom we describe the clinical phenotype.ConclusionsWe designed a cell-based assay to test the pathogenicity of CAD variants, identifying 11 CAD deficient individuals, who could benefit from uridine therapy.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Giada Moresco ◽  
Jole Costanza ◽  
Carlo Santaniello ◽  
Ornella Rondinone ◽  
Federico Grilli ◽  
...  

Abstract Background De novo pathogenic variants in the DDX3X gene are reported to account for 1–3% of unexplained intellectual disability (ID) in females, leading to the rare disease known as DDX3X syndrome (MRXSSB, OMIM #300958). Besides ID, these patients manifest a variable clinical presentation, which includes neurological and behavioral defects, and abnormal brain MRIs. Case presentation We report a 10-year-old girl affected by delayed psychomotor development, delayed myelination, and polymicrogyria (PMG). We identified a novel de novo missense mutation in the DDX3X gene (c.625C > G) by whole exome sequencing (WES). The DDX3X gene encodes a DEAD-box ATP-dependent RNA-helicase broadly implicated in gene expression through regulation of mRNA metabolism. The identified mutation is located just upstream the helicase domain and is suggested to impair the protein activity, thus resulting in the altered translation of DDX3X-dependent mRNAs. The proband, presenting with the typical PMG phenotype related to the syndrome, does not show other clinical signs frequently reported in presence of missense DDX3X mutations that are associated with a most severe clinical presentation. In addition, she has brachycephaly, never described in female DDX3X patients, and macroglossia, that has never been associated with the syndrome. Conclusions This case expands the knowledge of DDX3X pathogenic variants and the associated DDX3X syndrome phenotypic spectrum.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 663
Author(s):  
Stijn van de Plassche ◽  
Arjan PM de Brouwer

MED12 is a member of the Mediator complex that is involved in the regulation of transcription. Missense variants in MED12 cause FG syndrome, Lujan-Fryns syndrome, and Ohdo syndrome, as well as non-syndromic intellectual disability (ID) in hemizygous males. Recently, female patients with de novo missense variants and de novo protein truncating variants in MED12 were described, resulting in a clinical spectrum centered around ID and Hardikar syndrome without ID. The missense variants are found throughout MED12, whether they are inherited in hemizygous males or de novo in females. They can result in syndromic or nonsyndromic ID. The de novo nonsense variants resulting in Hardikar syndrome that is characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, are found more N-terminally, whereas the more C-terminally positioned variants are de novo protein truncating variants that cause a severe, syndromic phenotype consisting of ID, facial dysmorphism, short stature, skeletal abnormalities, feeding difficulties, and variable other abnormalities. This broad range of distinct phenotypes calls for a method to distinguish between pathogenic and non-pathogenic variants in MED12. We propose an isogenic iNeuron model to establish the unique gene expression patterns that are associated with the specific MED12 variants. The discovery of these patterns would help in future diagnostics and determine the causality of the MED12 variants.


2019 ◽  
Vol 56 (10) ◽  
pp. 1386-1392
Author(s):  
Karel-Bart Celie ◽  
Melissa Yuan ◽  
Christopher Cunniff ◽  
Jarrod Bogue ◽  
Caitlin Hoffman ◽  
...  

Little is currently known about the mechanisms by which pathogenic variants of FGFR2 produce changes in the FGFR protein and influence the clinical presentation of affected individuals. We report on a patient with a de novo pathogenic variant of FGFR2 and a phenotype consistent with Jackson-Weiss syndrome who presented with delayed, rapidly progressive multisutural craniosynostosis and associated medical complications. Using 3-dimensional modeling of the FGFR protein, we provide evidence that this variant resulted in abnormal dimerization and constitutive activation of FGFR, leading to the Jackson-Weiss phenotype. Knowledge regarding the correlation between genotype and phenotype of persons with FGFR2-related craniosynostosis has the potential to allow for anticipation of medical complications, institution of early treatment, and improved clinical outcomes.


2019 ◽  
Vol 35 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Andrea Accogli ◽  
Judith St-Onge ◽  
Nassima Addour-Boudrahem ◽  
Joël Lafond-Lapalme ◽  
Alexandre Dionne Laporte ◽  
...  

The term spinocerebellar ataxia encompasses a heterogeneous group of neurodegenerative disorders due to pathogenic variants in more than 100 genes, underlying 2 major groups of ataxia: autosomal dominant cerebellar ataxias (ADCA, also known as spinocerebellar ataxias [SCAs]) due to heterozygous variants or polyglutamine triplet expansions leading to adult-onset ataxia, and autosomal recessive spinocerebellar ataxias (ARCAs, also known as SCARs) due to biallelic variants, usually resulting in more severe and earlier-onset cerebellar ataxia. Certain ataxia genes, including SPTBN2 which encodes β-III spectrin, are responsible for both SCA and SCAR, depending on whether the pathogenic variant occurs in a monoallelic or biallelic state, respectively. Accordingly, 2 major phenotypes have been linked to SPTBN2: pathogenic heterozygous in-frame deletions and missense variants result in an adult-onset, slowly progressive ADCA (SCA5) through a dominant negative effect, whereas biallelic loss-of-function variants cause SCAR14, an allelic disorder characterized by infantile-onset cerebellar ataxia and cognitive impairment. Of note, 2 heterozygous missense variants (c.1438C>T, p.R480 W; c.1309C>G, p.R437G), both lying in the second spectrin repeat of SPTBN2, have been linked to infantile-onset cerebellar ataxia, similar to SCAR14. Here, we report a novel de novo heterozygous pathogenic missense variant (c.1310G>A) in SPTBN2 in a child with infantile-onset cerebellar ataxia and mild cognitive impairment. This variant affects the same R437 residue of the second spectrin repeat but results in a different amino acid change (p.R437Q). We review previously reported cases and discuss possible pathomechanisms responsible for the early-onset cerebellar phenotype due to disease-causing variants in the second spectrin repeat.


2021 ◽  
Vol 12 ◽  
Author(s):  
Youn Hee Jee ◽  
Mariam Gangat ◽  
Olga Yeliosof ◽  
Adrian G. Temnycky ◽  
Selena Vanapruks ◽  
...  

PurposeCongenital hypopituitarism usually occurs sporadically. In most patients, the etiology remains unknown.MethodsWe studied 13 children with sporadic congenital hypopituitarism. Children with non-endocrine, non-familial idiopathic short stature (NFSS) (n = 19) served as a control group. Exome sequencing was performed in probands and both unaffected parents. A burden testing approach was used to compare the number of candidate variants in the two groups.ResultsFirst, we assessed the frequency of rare, predicted-pathogenic variants in 42 genes previously reported to be associated with pituitary gland development. The average number of variants per individual was greater in probands with congenital hypopituitarism than those with NFSS (1.1 vs. 0.21, mean variants/proband, P = 0.03). The number of probands with at least 1 variant in a pituitary-associated gene was greater in congenital hypopituitarism than in NFSS (62% vs. 21%, P = 0.03). Second, we assessed the frequency of rare, predicted-pathogenic variants in the exome (to capture undiscovered causes) that were inherited in a fashion that could explain the sporadic occurrence of the proband’s condition with a monogenic etiology (de novo mutation, autosomal recessive, or X-linked recessive) with complete penetrance. There were fewer monogenic candidates in the probands with congenital hypopituitarism than those with NFSS (1.3 vs. 2.5 candidate variants/proband, P = 0.024). We did not find any candidate variants (0 of 13 probands) in genes previously reported to explain the phenotype in congenital hypopituitarism, unlike NFSS (8 of 19 probands, P = 0.01).ConclusionOur findings provide evidence that the etiology of sporadic congenital hypopituitarism has a major genetic component but may be infrequently monogenic with full penetrance, suggesting a more complex etiology.


2021 ◽  
Author(s):  
Hans-Jürgen Kreienkamp ◽  
Matias Wagner ◽  
Heike Weigand ◽  
Allyn McConkie-Rossell ◽  
Marie McDonald ◽  
...  

AbstractBain type of X-linked syndromic intellectual developmental disorder, caused by pathogenic missense variants in HRNRPH2, was initially described in six female individuals affected by moderate-to-severe neurodevelopmental delay. Although it was initially postulated that the condition would not be compatible with life in males, several affected male individuals harboring pathogenic variants in HNRNPH2 have since been documented. However, functional in-vitro analyses of identified variants have not been performed and, therefore, possible genotype–phenotype correlations remain elusive. Here, we present eight male individuals, including a pair of monozygotic twins, harboring pathogenic or likely pathogenic HNRNPH2 variants. Notably, we present the first individuals harboring nonsense or frameshift variants who, similarly to an individual harboring a de novo p.(Arg29Cys) variant within the first quasi-RNA-recognition motif (qRRM), displayed mild developmental delay, and developed mostly autistic features and/or psychiatric co-morbidities. Additionally, we present two individuals harboring a recurrent de novo p.(Arg114Trp), within the second qRRM, who had a severe neurodevelopmental delay with seizures. Functional characterization of the three most common HNRNPH2 missense variants revealed dysfunctional nucleocytoplasmic shuttling of proteins harboring the p.(Arg206Gln) and p.(Pro209Leu) variants, located within the nuclear localization signal, whereas proteins with p.(Arg114Trp) showed reduced interaction with members of the large assembly of splicing regulators (LASR). Moreover, RNA-sequencing of primary fibroblasts of the individual harboring the p.(Arg114Trp) revealed substantial alterations in the regulation of alternative splicing along with global transcriptome changes. Thus, we further expand the clinical and variant spectrum in HNRNPH2-associated disease in males and provide novel molecular insights suggesting the disorder to be a spliceopathy on the molecular level.


Author(s):  
Yanqin Zhang ◽  
Jan Böckhaus ◽  
Fang Wang ◽  
Suxia Wang ◽  
Diana Rubel ◽  
...  

Abstract Background Autosomal recessive Alport syndrome (ARAS) is caused by pathogenic variants in both alleles of either COL4A3 or COL4A4 genes. Reports on ARAS are rare due to small patient numbers and there are no reports on renin-angiotensin-aldosterone system (RAAS) inhibition therapy in ARAS. Methods Retrospective study in 101 patients with ARAS from Chinese Registry Database of Hereditary Kidney Diseases and European Alport Registry. Genotype–phenotype correlations and nephroprotective effects of RAAS inhibition in ARAS were evaluated. Results Median age was 15 years (range 1.5–46 years). Twelve patients progressed to stage 5 chronic kidney disease (CKD5) at median age 20.5 years. Patients without missense variants had both higher prevalence and earlier onset age of hearing loss, nephrotic-range proteinuria, more rapid decline of eGFR, and earlier onset age of CKD5 compared to patients with 1 or 2 missense variants. Most patients (79/101, 78%) currently are treated with RAAS inhibitors; median age at therapy initiation was 10 years and mean duration 6.5 ± 6.0 years. Median age at CKD5 for untreated patients was 24 years. RAAS inhibition therapy delayed CKD5 onset in those with impaired kidney function (T-III) to median age 35 years, but is undefined in treated patients with proteinuria (T-II) due to low number of events. No treated patients with microalbuminuria (T-I) progressed to CKD5. ARAS patients with 1 or 2 missense variants showed better response to treatment than patients with non-missense-variants. Conclusions Our study provides the first evidence for early use of RAAS inhibition therapy in patients with ARAS. Furthermore, genotype in ARAS correlates with response to therapy in favor of missense variants.


2020 ◽  
Vol 51 (04) ◽  
pp. 245-250
Author(s):  
Chloé Angelini ◽  
Marie Thibaud ◽  
Nathalie Aladjidi ◽  
Pierre Bessou ◽  
Sébastien Cabasson ◽  
...  

AbstractCutis laxa is a heterogeneous group of diseases, characterized by abundant and wrinkled skin and a variable degree of intellectual disability. Cutis laxa, autosomal recessive, type IIIA and autosomal dominant 3 syndromes are caused by autosomal recessive or de novo pathogenic variants in ALDH18A1. Autosomal recessive variants are known to lead to the most severe neurological phenotype, and very few patients have been described.We describe a 13-month-old patient with cutis laxa, autosomal recessive, type IIIA, with an extremely severe phenotype, including novel neurological findings. This description enlarges the neurological spectrum associated to cutis laxa, autosomal recessive, type IIIA, and provides an additional description of this syndrome.


2021 ◽  
Author(s):  
Chiara Kloeckner ◽  
J. Pedro Fernandez Murray ◽  
Mahtab Tavasoli ◽  
Heinrich Sticht ◽  
Gisela Stoltenburg-Didinger ◽  
...  

The Kennedy pathways catalyze the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus since four out of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A), and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders, and microcephaly. Using structural molecular modeling and functional testing of the variants in a in a cell-based S. cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly.


Sign in / Sign up

Export Citation Format

Share Document