scholarly journals Caldera resurgence driven by magma viscosity contrasts

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Federico Galetto ◽  
Valerio Acocella ◽  
Luca Caricchi
Keyword(s):  
2020 ◽  
Vol 82 (12) ◽  
Author(s):  
Mathieu Colombier ◽  
Thomas Shea ◽  
Alain Burgisser ◽  
Timothy H. Druitt ◽  
Lucia Gurioli ◽  
...  

AbstractMagma ascent during silicic dome-forming eruptions is characterized by significant changes in magma viscosity, permeability, and gas overpressure in the conduit. These changes depend on a set of parameters such as ascent rate, outgassing and crystallization efficiency, and magma viscosity, which in turn may influence the prevailing conditions for effusive versus explosive activity. Here, we combine chemical and textural analyses of tephra with viscosity models to provide a better understanding of the effusive-explosive transitions during Vulcanian phases of the 9.4 ka eruption of Kilian Volcano, Chaîne des Puys, France. Our results suggest that effusive activity at the onset of Vulcanian episodes at Kilian Volcano was promoted by (i) rapid ascent of initially crystal-poor and volatile-rich trachytic magma, (ii) a substantial bulk and melt viscosity increase driven by extensive volatile loss and crystallization, and (iii) efficient degassing/outgassing in a crystal-rich magma at shallow depths. Trachytic magma repeatedly replenished the upper conduit, and variations in the amount of decompression and cooling caused vertical textural stratification, leading to variable degrees of crystallization and outgassing. Outgassing promoted effusive dome growth and occurred via gas percolation through large interconnected vesicles, fractures, and tuffisite veins, fostering the formation of cristobalite in the carapace and talus regions. Build-up of overpressure was likely caused by closing of pore space (bubbles and fractures) in the dome through a combination of pore collapse, cristobalite formation, sintering in tuffisite veins, and limited pre-fragmentation coalescence in the dome or underlying hot vesicular magma. Sealing of the carapace may have caused a transition from open- to closed- system degassing and to renewed explosive activity. We generalize our findings to propose that the broad spectrum of eruptive styles for trachytic magmas may be inherited from a combination of characteristics of trachytic melts that include high water solubility and diffusivity, rapid microlite growth, and low melt viscosity compared to their more evolved subalkaline dacitic and rhyolitic equivalents. We show that trachytes may erupt with a similar style (e.g., Vulcanian) but at significantly higher ascent rates than their andesitic, dacitic, and rhyolitic counterparts. This suggests that the periodicity of effusive-explosive transitions at trachytic volcanoes may differ from that observed at the well-monitored andesitic, dacitic, and rhyolitic volcanoes, which has implications for hazard assessment associated with trachytic eruptions.


Author(s):  
F. Holtz ◽  
B. Scaillet ◽  
H. Behrens ◽  
F. Schulze ◽  
M. Pichavant

ABSTRACT:New experimental determinations of water solubility in haplogranitic melts (anhydrous compositions in the system Qz-Ab-Or and binary joins) and of the viscosity of hydrous Qz28Ab38Or34 melts (normative proportions) and natural peraluminous leucogranitic melt (Gangotri, High Himalaya) are used to constrain the evolution of viscosity of ascending magmas, depending on their P-T paths.At constant pressure, in the case of fluid-absent melting conditions, with water as the main volatile dissolved in the melts, the viscosity of melts generated from quartzo-feldspathic protoliths is lower at low temperature than at, high temperature (difference of 1-2 log units between 700 and 900°C). This is due to the higher water contents of the melts at low temperature than at high temperature and to the fact that decreasing temperature does not counterbalance the effect of increasing melt water content. In ascending magmas generated from crustal material the magma viscosity does not change significantly whatever the P-T path followed (i.e. path with cooling and crystallisation; adiabatic path with decompression melting) as long as the crystal fraction is low enough to assume a Newtonian behaviour (30-50% crystals, depending on size and shape). Comparison of the properties of natural and synthetic systems suggests that both water solubility and the viscosity of multicomponent natural felsic melts (with less than 30-35% normative Qz) can be extrapolated from those of the equivalent synthetic feldspar melts.


2007 ◽  
Vol 19 (5) ◽  
pp. 657-669 ◽  
Author(s):  
Yann Morizet ◽  
Alexander R.L. Kohn Nichols ◽  
Richard A. Brooker ◽  
Donald B. Dingwell

Author(s):  
Alan Whittington ◽  
Pascal Richet ◽  
Harald Behrens ◽  
François Holtz ◽  
Bruno Scaillet

ABSTRACTViscosities of liquid albite (NaAlSi3O8) and a Himalayan leucogranite were measured near the glass transition at a pressure of one atmosphere for water contents of 0, 2·8 and 3·4 wt.%. Measured viscosities range from 1013·8 Pa. s at 935 K to 109·0 Pa. s at 1119 K for anhydrous granite, and from 1010·2 Pa. s at 760 K to 1012·9 Pa. s at 658 K for granite containing 3·4 wt.% H2O. The leucogranite is the first naturally occurring liquid composition to be investigated over the wide range of T-X(H2O) conditions which may be encountered in both plutonic and volcanic settings. At typical magmatic temperatures of 750°C, the viscosity of the leucogranite is 1011·0 Pa. s for the anhydrous liquid, dropping to 106·5 Pa. s for a water content of 3 wt.% H2O. For the same temperature, the viscosity of liquid NaAlSi3O8 is reduced from 1012·2 to 106·3 Pa. s by the addition of 1·9 wt.% H2O. Combined with published high-temperature viscosity data, these results confirm that water reduces the viscosity of NaAlSi3O8 liquids to a much greater degree than that of natural leucogranitic liquids. Furthermore, the viscosity of NaAlSi3O8 liquid becomes substantially nonArrhenian at water contents as low as 1 wt.% H2O, while that of the leucogranite appears to remain close to Arrhenian to at least 3 wt.% H2O, and viscosity–temperature relationships for hydrous leucogranites must be nearly Arrhenian over a wide range of temperature and viscosity. Therefore, the viscosity of hydrous NaAlSi3O8 liquid does not provide a good model for natural granitic or rhyolitic liquids, especially at lower temperatures and water contents.Qualitatively, the differences can be explained in terms of configurational entropy theory because the addition of water should lead to higher entropies of mixing in simple model compositions than in complex natural compositions. This hypothesis also explains why the water reduces magma viscosity to a larger degree at low temperatures, and is consistent with published viscosity data for hydrous liquid compositions ranging from NaAlSi3O8 and synthetic haplogranites to natural samples. Therefore, predictive models of magma viscosity need to account for compositional variations in more detail than via simple approximations of the degree of polymerisation of the melt structure.


Sign in / Sign up

Export Citation Format

Share Document