magma viscosity
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Natalya Zeinalova ◽  
Alik Ismail-Zadeh ◽  
Oleg Melnik ◽  
Igor Tsepelev ◽  
Vyacheslav Zobin

Magma extrusion, lava dome growth, collapse of domes, and associated pyroclastic flow hazards are among important volcanological studies. In this paper, we analyze the influence of the magma viscosity and discharge rates on the lava dome morphology at Volcán de Colima in Mexico during a long dome-building episode lasting from early 2007 to fall 2009 without explosive dome destruction. Camera images of the lava dome growth together with recorded volumes of the erupted lava have been used to constrain numerical modeling and hence to match the history of the dome growth by nudging model forecasts to observations. Our viscosity model incorporates crystal growth kinetics and depends on the characteristic time of crystal content growth (or CCGT) and the crystal-free magma viscosity. Initially, we analyze how this viscosity, CCGT, and the rate of lava extrusion influence the morphology of the growing dome. Several model scenarios of lava dome growth are then considered depending on the crater geometry, the conduit location, the effective viscosity of dome carapace, and the extrusion rates. These rates are determined either empirically by optimizing the fit between the morphological shape of modeled domes and that of the observed dome or from the recorded lava dome volumes. The maximum height of the modeled lava dome and its horizontal extent are in a good agreement with observations in the case of the empirically-derived extrusion rates. It is shown that the topography of the crater at Volcán de Colima is likely to be inclined toward the west. The viscosity of the modeled lava dome (∼1012 Pa s) is in a good agreement with the effective viscosity estimated experimentally from lavas of Volcán de Colima. Due to the interplay between the lava extrusion and the gravity forces, the dome reaches a height threshold, and after that a horizontal gravity spreading starts to play an essential role in the lava dome evolution. The model forecasts that the dome carapace of higher viscosity (∼1014 Pa s) influences the dome growth and its morphology during long dome-building episodes by retarding horizontal advancement and developing steep-sided eastern edge of the dome at the volcano. The developed model can be used in assessments of future effusive eruptions and lava dome growth at Volcán de Colima or elsewhere. History matching modeling of lava dome growth sheds a light on dynamic processes inside the dome and may assist in assessing stress state in the dome carapace and in forecasting the dome failures.


2021 ◽  
Vol 15 (3) ◽  
pp. 159-168
Author(s):  
Yu. V. Starodubtseva ◽  
I. S. Starodubtsev ◽  
A. T. Ismail-Zadeh ◽  
I. A. Tsepelev ◽  
O. E. Melnik ◽  
...  

Abstract Lava domes form when a highly viscous magma erupts on the surface. Several types of lava dome morphology can be distinguished depending on the flow rate and the rheology of magma: obelisks, lava lobes, and endogenic structures. The viscosity of magma nonlinearly depends on the volume fraction of crystals and temperature. Here we present an approach to magma viscosity estimation based on a comparison of observed and simulated morphological forms of lava domes. We consider a two-dimensional axisymmetric model of magma extrusion on the surface and lava dome evolution, and assume that the lava viscosity depends only on the volume fraction of crystals. The crystallization is associated with a growth of the liquidus temperature due to the volatile loss from the magma, and it is determined by the characteristic time of crystal content growth (CCGT) and the discharge rate. Lava domes are modeled using a finite-volume method implemented in Ansys Fluent software for various CCGTs and volcanic vent sizes. For a selected eruption duration a set of morphological shapes of domes (shapes of the interface between lava dome and air) is obtained. Lava dome shapes modeled this way are compared with the observed shape of the lava dome (synthesized in the study by a random modification of one of the calculated shapes). To estimate magma viscosity, the deviation between the observed dome shape and the simulated dome shapes is assessed by three functionals: the symmetric difference, the peak signal-to-noise ratio, and the structural similarity index measure. These functionals are often used in the computer vision and in image processing. Although each functional allows to determine the best fit between the modeled and observed shapes of lava dome, the functional based on the structural similarity index measure performs it better. The viscosity of the observed dome can be then approximated by the viscosity of the modeled dome, which shape fits best the shape of the observed dome. This approach can be extended to three-dimensional case studies to restore the conditions of natural lava dome growth.


Nature ◽  
2021 ◽  
Vol 592 (7853) ◽  
pp. 237-241
Author(s):  
D. C. Roman ◽  
A. Soldati ◽  
D. B. Dingwell ◽  
B. F. Houghton ◽  
B. R. Shiro
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gilles Seropian ◽  
Ben M. Kennedy ◽  
Thomas R. Walter ◽  
Mie Ichihara ◽  
Arthur D. Jolly

AbstractIt is generally accepted that tectonic earthquakes may trigger volcanic activity, although the underlying mechanisms are poorly constrained. Here, we review current knowledge, and introduce a novel framework to help characterize earthquake-triggering processes. This framework outlines three parameters observable at volcanoes, namely magma viscosity, open- or closed-system degassing and the presence or absence of an active hydrothermal system. Our classification illustrates that most types of volcanoes may be seismically-triggered, though require different combinations of volcanic and seismic conditions, and triggering is unlikely unless the system is primed for eruption. Seismically-triggered unrest is more common, and particularly associated with hydrothermal systems.


2020 ◽  
Vol 82 (12) ◽  
Author(s):  
Mathieu Colombier ◽  
Thomas Shea ◽  
Alain Burgisser ◽  
Timothy H. Druitt ◽  
Lucia Gurioli ◽  
...  

AbstractMagma ascent during silicic dome-forming eruptions is characterized by significant changes in magma viscosity, permeability, and gas overpressure in the conduit. These changes depend on a set of parameters such as ascent rate, outgassing and crystallization efficiency, and magma viscosity, which in turn may influence the prevailing conditions for effusive versus explosive activity. Here, we combine chemical and textural analyses of tephra with viscosity models to provide a better understanding of the effusive-explosive transitions during Vulcanian phases of the 9.4 ka eruption of Kilian Volcano, Chaîne des Puys, France. Our results suggest that effusive activity at the onset of Vulcanian episodes at Kilian Volcano was promoted by (i) rapid ascent of initially crystal-poor and volatile-rich trachytic magma, (ii) a substantial bulk and melt viscosity increase driven by extensive volatile loss and crystallization, and (iii) efficient degassing/outgassing in a crystal-rich magma at shallow depths. Trachytic magma repeatedly replenished the upper conduit, and variations in the amount of decompression and cooling caused vertical textural stratification, leading to variable degrees of crystallization and outgassing. Outgassing promoted effusive dome growth and occurred via gas percolation through large interconnected vesicles, fractures, and tuffisite veins, fostering the formation of cristobalite in the carapace and talus regions. Build-up of overpressure was likely caused by closing of pore space (bubbles and fractures) in the dome through a combination of pore collapse, cristobalite formation, sintering in tuffisite veins, and limited pre-fragmentation coalescence in the dome or underlying hot vesicular magma. Sealing of the carapace may have caused a transition from open- to closed- system degassing and to renewed explosive activity. We generalize our findings to propose that the broad spectrum of eruptive styles for trachytic magmas may be inherited from a combination of characteristics of trachytic melts that include high water solubility and diffusivity, rapid microlite growth, and low melt viscosity compared to their more evolved subalkaline dacitic and rhyolitic equivalents. We show that trachytes may erupt with a similar style (e.g., Vulcanian) but at significantly higher ascent rates than their andesitic, dacitic, and rhyolitic counterparts. This suggests that the periodicity of effusive-explosive transitions at trachytic volcanoes may differ from that observed at the well-monitored andesitic, dacitic, and rhyolitic volcanoes, which has implications for hazard assessment associated with trachytic eruptions.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Federico Galetto ◽  
Valerio Acocella ◽  
Luca Caricchi
Keyword(s):  

Jurnal MIPA ◽  
2017 ◽  
Vol 6 (2) ◽  
pp. 36
Author(s):  
Dolfi Paulus Padara

Gunung Lokon yang berada di lengan utara Sulawesi adalah salah satu gunung api paling aktif di Indonesia. Perilaku erupsinya telah dipelajari melalui analisis mikrostruktur abu vulkanik. Tujuan dari karakterisasi mikrostruktur adalah untuk mengestimasi nilai dari viskositas dan permeabilitas magma. Karakterisasi mikrostruktur menggunakan XRD, FTIR, SEM/EDS/XRF dan µCT. Abu vulkanik Lokon adalah mineral polimorf yang banyak mengandung kristal plagioklase. Abu Lokon mempunyai kandungan air 0,3 -0,6 % berat dan massa dasarnya terdiri dari partikel vesikular dan non vesikular. Viskositas dari magma Lokon adalah sekitar 107Pa.s pada 10000C dan fraksi volume kristal sekitar 0,45-0,5. Hasil-hasil ini menunjukkan bahwa reologi magma Lokon adalah bersifat non Newtonian dan mekanisme fragmentasinya adalah brittle fragmentation. Berdasarkan pada permeabilitas dan porositas yang dikuantisasi dengan µCT dapat disimpulkan bahwa fragmentasi magmanya tidak dipicu oleh outgassing. Dinamika erupsi eksplosif dari Gunung Lokon pada 2012-2013 adalah erupsi vulkanian pada skala sedang.Lokon volcano where located on North arm of Sulawesi is one of the most active volcanoes in Indonesia. Behaviour of its eruptions have been learned through microstructure analysis of volcanic ash. The goal of microstructure characterization is estimate value of magma viscosity and permeability. Characterization of microstructure using XRD, FTIR, SEM/EDS/XRF and µCT. Lokon volcanic ash is a polymorph minerals which contains many plagioclase crystal. Ash has water content between 0.3 – 0.6 % wt and its groundmass contains vesicular and non vesicular particles. Viscosity of Lokon magma is about 107Pa.s at 10000C and fraction of crystal volum between 0.45-0.5. These results showed that magma rheology of Lokon is non Newtonian and the mechanism of its fragmentation is brittle fragmentation. Based on permeability and porosity that quantified by µCT, it is concluded that the brittle fragmentation is not triggered by outgassing. Dynamics of explosive eruption of Lokon volcano at 2012-2013 is moderate vulcanian eruption.


Sign in / Sign up

Export Citation Format

Share Document