scholarly journals Mesopelagic fishes dominate otolith record of past two millennia in the Santa Barbara Basin

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
William A. Jones ◽  
David M. Checkley

Abstract The mesopelagic (200–1000 m) separates the productive upper ocean from the deep ocean, yet little is known of its long-term dynamics despite recent research that suggests fishes of this zone likely dominate global fish biomass and contribute to the downward flux of carbon. Here we show that mesopelagic fishes dominate the otolith (ear bone) record in anoxic sediment layers of the Santa Barbara Basin over the past two millennia. Among these mesopelagic fishes, otoliths from families Bathylagidae (deep-sea smelts) and Myctophidae (lanternfish) are most abundant. Otolith deposition rate fluctuates at decadal to centennial time scales and covaries with proxies for upper ocean temperature, consistent with climate forcing. Moreover, otolith deposition rate and proxies for temperature and primary productivity show contemporaneous discontinuities during the Medieval Climate Anomaly and Little Ice Age. Mesopelagic fishes may serve as proxies for future climatic influence at those depths including effects on the carbon cycle.

1990 ◽  
Vol 81 (4) ◽  
pp. 315-325 ◽  
Author(s):  
Barry Saltzman ◽  
Kirk A. Maasch

ABSTRACTThe theory of the Quaternary climate will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. Here we construct a simple mathematical model for the late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2) coupled with changes in the global ocean state and ice mass, under the additional influence or earth-orbital forcing, are primary determinants of the climatic state over this long period. Our goal is to illustrate how a single model governing both very long-term variations and higher frequency oscillatory variations in the Pleistocene can be formulated with relatively few adjustable parameters. Although the details of this model are speculative, and other factors neglected here are undoubtedly of importance, it is hoped that the formalism described can provide a basis for developing a comprehensive theory and systematically extending and improving it. According to our model the major near-100 ka period ice-age oscillations of the Pleistocene were caused by the downdraw of atmospheric CO2 (possibly a result of weathering of rapidly uplifted topography) to low enough levels for the ‘slow climatic system’, including glacial ice and the deep ocean state, to become unstable.


2018 ◽  
Vol 12 (7) ◽  
pp. 2249-2266 ◽  
Author(s):  
Nadine Steiger ◽  
Kerim H. Nisancioglu ◽  
Henning Åkesson ◽  
Basile de Fleurian ◽  
Faezeh M. Nick

Abstract. Rapid retreat of Greenland's marine-terminating glaciers coincides with regional warming trends, which have broadly been used to explain these rapid changes. However, outlet glaciers within similar climate regimes experience widely contrasting retreat patterns, suggesting that the local fjord geometry could be an important additional factor. To assess the relative role of climate and fjord geometry, we use the retreat history of Jakobshavn Isbræ, West Greenland, since the Little Ice Age (LIA) maximum in 1850 as a baseline for the parameterization of a depth- and width-integrated ice flow model. The impact of fjord geometry is isolated by using a linearly increasing climate forcing since the LIA and testing a range of simplified geometries. We find that the total length of retreat is determined by external factors – such as hydrofracturing, submarine melt and buttressing by sea ice – whereas the retreat pattern is governed by the fjord geometry. Narrow and shallow areas provide pinning points and cause delayed but rapid retreat without additional climate warming, after decades of grounding line stability. We suggest that these geometric pinning points may be used to locate potential sites for moraine formation and to predict the long-term response of the glacier. As a consequence, to assess the impact of climate on the retreat history of a glacier, each system has to be analyzed with knowledge of its historic retreat and the local fjord geometry.


2008 ◽  
Vol 21 (17) ◽  
pp. 4498-4513 ◽  
Author(s):  
Achim Stössel

Abstract The quality of Southern Ocean sea ice simulations in a global ocean general circulation model (GCM) depends decisively on the simulated upper-ocean temperature. This is confirmed by assimilating satellite-derived sea ice concentration to constrain the upper-layer temperature of a sea ice–ocean GCM. The resolution of the model’s sea ice component is about 22 km and thus comparable to the pixel resolution of the satellite data. The ocean component is coarse resolution to afford long-term integrations for investigations of the deep-ocean equilibrium response. Besides improving the sea ice simulation considerably, the simulations with constrained upper-ocean temperature yield much more realistic global deep-ocean properties, in particular when combined with glacial freshwater input. Both outcomes are relatively insensitive to the passive-microwave algorithm used to retrieve the ice concentration being assimilated. The sensitivity of the long-term global deep-ocean properties and circulation to the possible freshwater input from ice shelves and to the parameterization of vertical mixing in the Southern Ocean is reevaluated under the new constraint.


2017 ◽  
Vol 13 (3) ◽  
pp. 267-301 ◽  
Author(s):  
Lilo M. K. Henke ◽  
F. Hugo Lambert ◽  
Dan J. Charman

Abstract. The El Niño–Southern Oscillation (ENSO) is the most important source of global climate variability on interannual timescales and has substantial environmental and socio-economic consequences. However, it is unclear how it interacts with large-scale climate states over longer (decadal to centennial) timescales. The instrumental ENSO record is too short for analysing long-term trends and variability and climate models are unable to accurately simulate past ENSO states. Proxy data are used to extend the record, but different proxy sources have produced dissimilar reconstructions of long-term ENSO-like climate change, with some evidence for a temperature–precipitation divergence in ENSO-like climate over the past millennium, in particular during the Medieval Climate Anomaly (MCA; AD  ∼  800–1300) and the Little Ice Age (LIA; AD  ∼  1400–1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using weighting based on empirical orthogonal function (EOF) to create two new large-scale reconstructions of ENSO-like climate change derived independently from precipitation proxies and temperature proxies. The method is developed and validated using model-derived pseudo-proxy experiments that address the effects of proxy dating error, resolution, and noise to improve uncertainty estimations. We find no evidence that temperature and precipitation disagree over the ENSO-like state over the past millennium, but neither do they agree strongly. There is no statistically significant difference between the MCA and the LIA in either reconstruction. However, the temperature reconstruction suffers from a lack of high-quality proxy records located in ENSO-sensitive regions, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite, and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records and establish the long-term stability of this important mode of climatic variability.


Sign in / Sign up

Export Citation Format

Share Document