scholarly journals Increased yields and biological potency of knob-into-hole-based soluble MHC class II molecules

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Pau Serra ◽  
Nahir Garabatos ◽  
Santiswarup Singha ◽  
César Fandos ◽  
Josep Garnica ◽  
...  

Abstract Assembly of soluble peptide-major histocompatibility complex class II (pMHCII) monomers into multimeric structures enables the detection of antigen-specific CD4+ T cells in biological samples and, in some configurations, their reprogramming in vivo. Unfortunately, current MHCII-αβ chain heterodimerization strategies are typically associated with low production yields and require the use of foreign affinity tags for purification, precluding therapeutic applications in humans. Here, we show that fusion of peptide-tethered or empty MHCII-αβ chains to the IgG1-Fc mutated to form knob-into-hole structures results in the assembly of highly stable pMHCII monomers. This design enables the expression and rapid purification of challenging pMHCII types at high yields without the need for leucine zippers and purification affinity tags. Importantly, this design increases the antigen-receptor signaling potency of multimerized derivatives useful for therapeutic applications and facilitates the detection and amplification of low-avidity T cell specificities in biological samples using flow cytometry.

1999 ◽  
Vol 10 (9) ◽  
pp. 2891-2904 ◽  
Author(s):  
Valérie Brachet ◽  
Gérard Péhau-Arnaudet ◽  
Catherine Desaymard ◽  
Graça Raposo ◽  
Sebastian Amigorena

Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.


2013 ◽  
Vol 190 (12) ◽  
pp. 5961-5971 ◽  
Author(s):  
Alessandra De Riva ◽  
Mark C. Varley ◽  
Leslie J. Bluck ◽  
Anne Cooke ◽  
Michael J. Deery ◽  
...  

2000 ◽  
Vol 191 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Li Wen ◽  
F. Susan Wong ◽  
Jie Tang ◽  
Ning-Yuan Chen ◽  
Martha Altieri ◽  
...  

Although DQA1*0301/DQB1*0302 is the human histocompatibility leukocyte antigen (HLA) class II gene most commonly associated with human type 1 diabetes, direct in vivo experimental evidence for its diabetogenic role is lacking. Therefore, we generated C57BL/6 transgenic mice that bear this molecule and do not express mouse major histocompatibility complex (MHC) class II molecules (DQ8+/mII−). They did not develop insulitis or spontaneous diabetes. However, when DQ8+/mII− mice were bred with C57BL/6 mice expressing costimulatory molecule B7-1 on β cells (which normally do not develop diabetes), 81% of the DQ8+/mII−/B7-1+ mice developed spontaneous diabetes. The diabetes was accompanied by severe insulitis composed of both T cells (CD4+ and CD8+) and B cells. T cells from the diabetic mice secreted large amounts of interferon γ, but not interleukin 4, in response to DQ8+ islets and the putative islet autoantigens, insulin and glutamic acid decarboxylase (GAD). Diabetes could also be adoptively transferred to irradiated nondiabetic DQ8+/mII−/B7-1+ mice. In striking contrast, none of the transgenic mice in which the diabetes protective allele (DQA1*0103/DQB1*0601, DQ6 for short) was substituted for mouse MHC class II molecules but remained for the expression of B7-1 on pancreatic β cells (DQ6+/mII−/B7-1+) developed diabetes. Only 7% of DQ−/mII−/B7-1+ mice developed diabetes at an older age, and none of the DQ−/mII+/B7-1+ mice or DQ8+/mII+/B7-1+ mice developed diabetes. In conclusion, substitution of HLA-DQA1*0301/DQB1*0302, but not HLA-DQA1*0103/DQB1*0601, for murine MHC class II provokes autoimmune diabetes in non–diabetes-prone rat insulin promoter (RIP).B7-1 C57BL/6 mice. Our data provide direct in vivo evidence for the diabetogenic effect of this human MHC class II molecule and a unique “humanized” animal model of spontaneous diabetes.


2009 ◽  
Vol 10 (7) ◽  
pp. 706-712 ◽  
Author(s):  
Tomohiro Yoshimoto ◽  
Koubun Yasuda ◽  
Hidehisa Tanaka ◽  
Masakiyo Nakahira ◽  
Yasutomo Imai ◽  
...  
Keyword(s):  
T Cells ◽  

2017 ◽  
Vol 47 (8) ◽  
pp. 1317-1323 ◽  
Author(s):  
David A. Anderson ◽  
Gary E. Grajales-Reyes ◽  
Ansuman T. Satpathy ◽  
Carlos E. Vasquez Hueichucura ◽  
Theresa L. Murphy ◽  
...  

2001 ◽  
Vol 13 (10) ◽  
pp. 1291-1300 ◽  
Author(s):  
William Stohl ◽  
Dong Xu ◽  
Song Zang ◽  
Kyung S. Kim ◽  
Lily Li ◽  
...  
Keyword(s):  
Class Ii ◽  

1999 ◽  
Vol 1 (11) ◽  
pp. 903-912 ◽  
Author(s):  
Tasha N Sims ◽  
Philip F Halloran
Keyword(s):  
Class Ii ◽  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3181-3181
Author(s):  
Maite Urbieta ◽  
Isabel Barao ◽  
Monica Jones ◽  
William J. Murphy ◽  
Robert B. Levy

Abstract CD4+CD25+ T cells (Treg) comprise a small population within the normal peripheral CD4 T cell compartment. Their primary physiological role appears to be the regulation of autoimmune responses, however, in recent years it has been established that they can modulate anti-tumor as well as transplantation responses. Treg cells have been found to exert their affects on multiple types of immunologically relevant cells including CD4, CD8 and NK populations. Although model dependent, cytokines including TGFβ and IL-10 have been identified as mediators of this population’s regulatory activity and ex-vivo, the inhibition effected is generally contact dependent. Based upon the expanding application of Treg cells in stem cell transplants for the control of GVHD, rejection (HVG) and GVL responses, we hypothesized that following T cell receptor engagement and activation in recipients, CD4+CD25+ cells may modulate hematopoietic responses via production of effector cytokines. To address this question, various populations of CD4+CD25+ T cells were initially co-cultured with unfractionated syngeneic bone marrow cells (BMC) for 24–48 hours in medium supplemented with growth factors to maintain progenitor cell (i.e. CFU) function. Following co-culture, cells were collected and replated in triplicate in methylcellulose containing medium together with hematopoietic growth factors and five-seven days later, colonies were counted. CD4+CD25+ T cells were purified from BALB/c or B6–CD8−/− mice which were then activated for 3–8 days with anti-CD3/CD28 beads (a gift of Dr. B. Blazar, U. Minn.) These cells inhibited syngeneic CFU-IL3 colony ($25 cells) formation at ratios as low as 2:1 and 0.5:1 CD4+CD25+: BMC. Notably, Tregs from B6-CD8−/− mice exhibited comparable inhibition of allogeneic (BALB/c) CFU-IL3. Non-activated CD4+CD25+ T cells co-cultured with BMC did not exhibit this inhibitory activity nor did CD4+CD25− cells which contaminated (<10%) CD4+CD25+ populations. Activated Treg cells were also found to inhibit the production of CFU-HPP, a multi-potential marrow progenitor cell population. Contact dependency was found to be required for this effect as separation of activated CD4+CD25+ T cells from BMC “targets” in trans-well cultures abrogated inhibition. Prior depletion of CD25+ cells in vivo resulted in increases in CFU-GM 7–9 days after syngeneic BMT in mice suggesting that Tregs can inhibit hematopoietic reconstitution in vivo. To examine a potential contribution of TGFβ in this model, neutralizing anti-TGFβ mab was added during CD4+CD25+ T cell + BMC co-culture. The inhibition of CFU activity was abrogated in the presence of this antibody. To begin investigating the role of MHC class II molecules in this Treg cell activity, c-kit+ enriched (>85%) BMC from B6-MHC class II KO and B6-wt mice were co-cultured with B6 Treg cells from CD8−/− mice. In contrast to B6-wt c-kit enriched populations, CFU inhibition was not detected against the MHC class II deficient c-kit enriched BMC population. Antibody experiments are in progress to determine if cognate interaction is required between c-kit enriched cells and CD4+CD25+ T cells. In summary, this is the first report demonstrating that CD4+CD25+ T cells can alter hematopoietic progenitor cell activity. We hypothesize that membrane bound TGFβ may participate in effecting such regulation via direct Treg cell interactions with progenitor cell populations.


Sign in / Sign up

Export Citation Format

Share Document