scholarly journals Early Endosomes Are Required for Major Histocompatiblity Complex Class II Transport to Peptide-loading Compartments

1999 ◽  
Vol 10 (9) ◽  
pp. 2891-2904 ◽  
Author(s):  
Valérie Brachet ◽  
Gérard Péhau-Arnaudet ◽  
Catherine Desaymard ◽  
Graça Raposo ◽  
Sebastian Amigorena

Antigen presentation to CD4+ T lymphocytes requires transport of newly synthesized major histocompatibility complex (MHC) class II molecules to the endocytic pathway, where peptide loading occurs. This step is mediated by a signal located in the cytoplasmic tail of the MHC class II-associated Ii chain, which directs the MHC class II-Ii complexes from the trans-Golgi network (TGN) to endosomes. The subcellular machinery responsible for the specific targeting of MHC class II molecules to the endocytic pathway, as well as the first compartments these molecules enter after exit from the TGN, remain unclear. We have designed an original experimental approach to selectively analyze this step of MHC class II transport. Newly synthesized MHC class II molecules were caused to accumulate in the Golgi apparatus and TGN by incubating the cells at 19°C, and early endosomes were functionally inactivated by in vivo cross-linking of transferrin (Tf) receptor–containing endosomes using Tf-HRP complexes and the HRP-insoluble substrate diaminobenzidine. Inactivation of Tf-containing endosomes caused a marked delay in Ii chain degradation, peptide loading, and MHC class II transport to the cell surface. Thus, early endosomes appear to be required for delivery of MHC class II molecules to the endocytic pathway. Under cross-linking conditions, most αβIi complexes accumulated in tubules and vesicles devoid of γ-adaptin and/or mannose-6-phosphate receptor, suggesting an AP1-independent pathway for the delivery of newly synthesized MHC class II molecules from the TGN to endosomes.

1995 ◽  
Vol 182 (2) ◽  
pp. 325-334 ◽  
Author(s):  
P J Peters ◽  
G Raposo ◽  
J J Neefjes ◽  
V Oorschot ◽  
R L Leijendekker ◽  
...  

In human B lymphoblastoid cell lines, the majority of major histocompatibility complex (MHC) class II heterodimers are located on the cell surface and in endocytic compartments, while invariant chain (Ii)-associated class II molecules represent biosynthetic intermediates which are present mostly in the endoplasmic reticulum and Golgi complex. To investigate the origin of the MHC class II-positive compartments and their relation to early endosomes, the intracellular distribution of MHC class II molecules and Ii in relation to endocytic tracers was studied in human lymphoblastoid B cells by immunoelectronmicroscopy on ultrathin cryosections. Cross-linking of surface immunoglobulins, followed by a brief period of internalization of the immune complexes, did not alter the intracellular distribution of MHC class II molecules. While early endosomes were abundantly labeled for the cross-linked immunoglobulins, < 1% of total MHC class II molecules were detectable in early endosomes. MHC class II- and Ii-positive structures associated with the trans-Golgi network can be reached by endocytosed bovine serum albumin (BSA)-gold conjugates after 30 min of internalization. Prolonged exposure to BSA-gold allowed visualization of later endocytic compartments, in which a progressive loss of Ii was observed: first the lumenal portion, and then the cytoplasmic portion of Ii escaped detection, culminating in the formation of MHC class II-positive compartments (MIIC) devoid of Ii. The loss of Ii also correlated with a transition from a multivesicular to a multilaminar, electron-dense MIIC. The intracellular compartments in which class II molecules reside (MIIC) are therefore a heterogeneous set of structures, part of the later aspects of the endocytic pathway.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


1995 ◽  
Vol 182 (5) ◽  
pp. 1573-1577 ◽  
Author(s):  
K Mehindate ◽  
J Thibodeau ◽  
M Dohlsten ◽  
T Kalland ◽  
R P Sékaly ◽  
...  

Staphylococcal enterotoxin A (SEA) has two distinct binding sites for major histocompatibility complex (MHC) class II molecules. The aspartic acid located at position 227 (D227) in the COOH terminus of SEA is one of the three residues involved in its interaction with the DR beta chain, whereas the phenylalanine 47 (F47) of the NH2 terminus is critical for its binding to the DR alpha chain. Upon interaction with MHC class II molecules, SEA triggers several cellular events leading to cytokine gene expression. In the present study, we have demonstrated that, contrary to wild-type SEA, stimulation of the THP1 monocytic cell line with SEA mutated at position 47 (SEAF47A) or at position 227 (SEAD227A) failed to induce interleukin 1 beta and tumor necrosis factor-alpha messenger RNA expression. Pretreatment of the cells with a 10-fold excess of either SEAF47A or SEAD227A prevented the increase in cytokine messenger RNA induced by wild-type SEA. However, cross-linking of SEAF47A or SEAD227A bound to MHC class II molecules with F(ab')2 anti-SEA mAb leads to cytokine gene expression, whereas cross-linking with F(ab) fragments had no effect. Taken together, these results indicate that cross-linking of two MHC class II molecules by one single SEA molecule is a requirement for cytokine gene expression.


1997 ◽  
Vol 139 (6) ◽  
pp. 1433-1446 ◽  
Author(s):  
Giorgio Ferrari ◽  
Andrew M. Knight ◽  
Colin Watts ◽  
Jean Pieters

Major histocompatibility complex (MHC) class II molecules are transported to intracellular MHC class II compartments via a transient association with the invariant chain (Ii). After removal of the invariant chain, peptides can be loaded onto class II molecules, a process catalyzed by human leukocyte antigen-DM (HLA-DM) molecules. Here we show that MHC class II compartments consist of two physically and functionally distinct organelles. Newly synthesized MHC class II/Ii complexes were targeted to endocytic organelles lacking HLA-DM molecules, where Ii degradation occurred. From these organelles, class II molecules were transported to a distinct organelle containing HLA-DM, in which peptides were loaded onto class II molecules. This latter organelle was not directly accessible via fluid phase endocytosis, suggesting that it is not part of the endosomal pathway. Uptake via antigen-specific membrane immunoglobulin resulted however in small amounts of antigen in the HLA-DM positive organelles. From this peptide-loading compartment, class II–peptide complexes were transported to the plasma membrane, in part after transit through endocytic organelles. The existence of two separate compartments, one involved in Ii removal and the other functioning in HLA-DM–dependent peptide loading of class II molecules, may contribute to the efficiency of antigen presentation by the selective recruitment of peptide-receptive MHC class II molecules and HLA-DM to the same subcellular location.


1992 ◽  
Vol 175 (2) ◽  
pp. 613-616 ◽  
Author(s):  
W Mourad ◽  
K Mehindate ◽  
T J Schall ◽  
S R McColl

Cells in the rheumatoid synovium express high levels of major histocompatibility complex (MHC) class II molecules in vivo. We have therefore examined the ability of engagement of MHC class II molecules by the superantigen Staphylococcal enterotoxin A (SEA) to activate interleukin 6 (IL-6) and IL-8 gene expression in type B synoviocytes isolated from patients with rheumatoid arthritis. SEA had a minimal or undetectable effect on the expression of either gene in resting synoviocytes, as determined by Northern blot and specific enzyme-linked immunosorbent assay. However, induction of MHC class II molecule expression after treatment of synoviocytes with interferon gamma (IFN-gamma) enabled the cells to respond to SEA in a dose-dependent manner, resulting in an increase in both the level of steady-state mRNA for IL-6 and IL-8, and the release of these cytokines into the supernatant. IFN-gamma by itself had no effect on the expression of either cytokine. Pretreatment of the cells with the transcription inhibitor actinomycin D prevented the increase in cytokine mRNA induced by SEA, whereas cycloheximide superinduced mRNA for both cytokines after stimulation by SEA. Taken together, these results indicate that signaling through MHC class II molecules may represent a novel mechanism by which inflammatory cytokine production is regulated in type B rheumatoid synoviocytes, and potentially provides insight into the manner by which superantigens may initiate and/or propagate autoimmune diseases.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


2013 ◽  
Vol 190 (12) ◽  
pp. 5961-5971 ◽  
Author(s):  
Alessandra De Riva ◽  
Mark C. Varley ◽  
Leslie J. Bluck ◽  
Anne Cooke ◽  
Michael J. Deery ◽  
...  

2000 ◽  
Vol 191 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Li Wen ◽  
F. Susan Wong ◽  
Jie Tang ◽  
Ning-Yuan Chen ◽  
Martha Altieri ◽  
...  

Although DQA1*0301/DQB1*0302 is the human histocompatibility leukocyte antigen (HLA) class II gene most commonly associated with human type 1 diabetes, direct in vivo experimental evidence for its diabetogenic role is lacking. Therefore, we generated C57BL/6 transgenic mice that bear this molecule and do not express mouse major histocompatibility complex (MHC) class II molecules (DQ8+/mII−). They did not develop insulitis or spontaneous diabetes. However, when DQ8+/mII− mice were bred with C57BL/6 mice expressing costimulatory molecule B7-1 on β cells (which normally do not develop diabetes), 81% of the DQ8+/mII−/B7-1+ mice developed spontaneous diabetes. The diabetes was accompanied by severe insulitis composed of both T cells (CD4+ and CD8+) and B cells. T cells from the diabetic mice secreted large amounts of interferon γ, but not interleukin 4, in response to DQ8+ islets and the putative islet autoantigens, insulin and glutamic acid decarboxylase (GAD). Diabetes could also be adoptively transferred to irradiated nondiabetic DQ8+/mII−/B7-1+ mice. In striking contrast, none of the transgenic mice in which the diabetes protective allele (DQA1*0103/DQB1*0601, DQ6 for short) was substituted for mouse MHC class II molecules but remained for the expression of B7-1 on pancreatic β cells (DQ6+/mII−/B7-1+) developed diabetes. Only 7% of DQ−/mII−/B7-1+ mice developed diabetes at an older age, and none of the DQ−/mII+/B7-1+ mice or DQ8+/mII+/B7-1+ mice developed diabetes. In conclusion, substitution of HLA-DQA1*0301/DQB1*0302, but not HLA-DQA1*0103/DQB1*0601, for murine MHC class II provokes autoimmune diabetes in non–diabetes-prone rat insulin promoter (RIP).B7-1 C57BL/6 mice. Our data provide direct in vivo evidence for the diabetogenic effect of this human MHC class II molecule and a unique “humanized” animal model of spontaneous diabetes.


Blood ◽  
1998 ◽  
Vol 92 (7) ◽  
pp. 2252-2259 ◽  
Author(s):  
Herbert Bosshart ◽  
Ruth F. Jarrett

Abstract Hodgkin's disease is a common malignancy of the lymphoid system. Although the scarce Hodgkin and Reed-Sternberg (HRS) tumor cells in involved tissue synthesize major histocompatibility complex (MHC) class II and costimulatory molecules such as CD40 or CD86, it is unclear whether these tumor cells are operational antigen-presenting cells (APC). We developed an immunofluorescence-based assay to determine the number of MHC class II molecules present on the surface of single living HRS cells. We found that in fresh Hodgkin's disease lymph node biopsies, a subset of HRS cells express a substantial number of surface MHC class II molecules that are occupied by MHC class II–associated invariant chain peptides (CLIP), indicating deficient loading of MHC class II molecules with antigenic peptides. Cultured Hodgkin's disease–derived (HD) cell lines, however, were found to express few MHC class II molecules carrying CLIP peptides on the cell surface and were shown to generate sodium dodecyl sulphate (SDS)-stable MHC class II αβ dimers. In addition to showing deficient MHC class II antigen presentation in a subset of HRS cells, our results show that the widely used HD-cell lines are not ideal in vitro models for the disease. The disruption of MHC class II–restricted antigen presentation in HRS cells could represent a key mechanism by which these tumor cells escape immune surveillance.


Sign in / Sign up

Export Citation Format

Share Document