scholarly journals Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Qi Wang ◽  
Xiaoming Wang ◽  
Zhi Yang ◽  
Ninghao Zhou ◽  
Yehao Deng ◽  
...  

AbstractThe efficiencies of green and red perovskite light-emitting diodes (PeLEDs) have been increased close to their theoretical upper limit, while the efficiency of blue PeLEDs is lagging far behind. Here we report enhancing the efficiency of sky-blue PeLEDs by overcoming a major hurdle of low photoluminescence quantum efficiency in wide-bandgap perovskites. Blending phenylethylammonium chloride into cesium lead halide perovskites yields a mixture of two-dimensional and three-dimensional perovskites, which enhances photoluminescence quantum efficiency from 1.1% to 19.8%. Adding yttrium (III) chloride into the mixture further enhances photoluminescence quantum efficiency to 49.7%. Yttrium is found to incorporate into the three-dimensional perovskite grain, while it is still rich at grain boundaries and surfaces. The yttrium on grain surface increases the bandgap of grain shell, which confines the charge carriers inside grains for efficient radiative recombination. Record efficiencies of 11.0% and 4.8% were obtained in sky-blue and blue PeLEDs, respectively.

Author(s):  
Yao Li ◽  
Kaimin Du ◽  
Manli Zhang ◽  
Xuan Gao ◽  
Yu Lu ◽  
...  

Metal halide perovskites are a new class of promising materials in optoelectronic applications. As optoelectronic properties of the lead halide perovskites are determined largely by their morphology, the morphology of...


2014 ◽  
Vol 357 ◽  
pp. 29-93 ◽  
Author(s):  
V.K. Chandra ◽  
B.P. Chandra ◽  
Piyush Jha

Organic light emitting diodes (OLEDs) have been the focus of intense study since the late 1980s, when the low voltage organic electroluminescence in small organic molecules such as Alq3, and large organic molecules such as polymers (PPV), was reported. Since that time, research has continued to demonstrate the potential of OLEDs as viable systems for displays and eco-friendly lighting applications. OLEDs offer full colour display, reduced manufacturing cost, larger viewing angle, more flexible, lower power consumption, better contrast, slimmer, etc. which help in replacing the other technologies such as LCD. The operation of OLEDs involves injection of charge carriers into organic semiconducting layers, recombination of charge carriers, formation of singlet and triplet excitons, and emission of light during decay of excitons. The maximum internal quantum efficiency of fluorescent OLEDs consisting of the emissive layer of fluorescent organic material is 25% because in this case only the 25% singlet excitons can emit light. The maximum internal quantum efficiency of phosphorescent OLEDs consisting of the emissive layer of fluorescent organic material mixed with phosphorescent material of heavy metal complexes such as platinum complexes, iridium complexes, etc. is nearly 100% because in this case both the 25% singlet excitons and 75% triplet excitons emit light. Recently, a new class of OLEDs based on thermally activated delayed fluorescence (TADF) has been reported, in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates of more than 106decays per second. These molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels and provides an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.The OLED technology can be used to make screens large enough for laptop, cell phones, desktop computers, televisions, etc. OLED materials could someday be applied to plastic and other materials to create wall-size video panels, roll-up screens for laptops, automotive displays, and even head wearable displays. Presently, the OLEDs are opening up completely new design possibilities for lighting in the world of tomorrow whereby the offices and living rooms could be illuminated by lighting panels on the ceiling. The present paper describes the salient features of OLEDs and discusses the applications of OLEDs in displays and solid state lighting devices. Finally, the challenges in the field of OLEDs are explored. Contents of Paper


Nanoscale ◽  
2021 ◽  
Author(s):  
Mingfei Zheng ◽  
Guojia Fang

Metal halide perovskites, as a newly emerging light-emitter, have been attracting considerable attention on luminescent materials and devices, due to their superior optoelectronic properties and potential practical applications. Recently, perovskite...


2019 ◽  
Vol 7 (10) ◽  
pp. 2781-2808 ◽  
Author(s):  
Binbin Luo ◽  
Fei Li ◽  
Ke Xu ◽  
Yan Guo ◽  
Ying Liu ◽  
...  

Lead halide perovskite (LHP) semiconductors with the general chemical formula ABX3 are now being widely investigated for a variety of applications including but not limited to high-efficiency photovoltaics (PVs) and light-emitting diodes (LEDs).


Sign in / Sign up

Export Citation Format

Share Document