scholarly journals Phase-dependent amplification of working memory content and performance

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanne ten Oever ◽  
Peter De Weerd ◽  
Alexander T. Sack
2020 ◽  
Vol 9 (6) ◽  
pp. 385-393
Author(s):  
Arvid Niemeyer ◽  
Lucia Rottmair ◽  
Cornelius Neumann ◽  
Cornelius Möckel

AbstractLight not only enables humans to perceive their surroundings, but also influences their sleep–wake cycle, mood, concentration and performance. Targeted use of these so called nonvisual effects could also have a positive contribution in automobiles by keeping passengers alert, minimizing error rates or bootsting attention in general. Since construction space in vehicle interios is scarce, this study compared the influence of differently-sized light panels and thus solid angles on nonvisual effects. In a counterbalanced order, 32 volunteers were exposed to three lighting conditions in the morning: baseline (12 lx, 2200 K), small (200 lx, 6500 K, 0.05 sr) and large (200 lx, 6500 K, 0.44 sr). During each session of 60 min, alertness, concentration and working memory were assessed before and during light exposure. After data analysis no significant main effects of light, measurement point or interaction between light and measurement point could be seen.


2021 ◽  
Vol 11 (6) ◽  
pp. 796
Author(s):  
Micaela Maria Zucchelli ◽  
Laura Piccardi ◽  
Raffaella Nori

Individuals with agoraphobia exhibit impaired exploratory activity when navigating unfamiliar environments. However, no studies have investigated the contribution of visuospatial working memory (VSWM) in these individuals’ ability to acquire and process spatial information while considering the use of egocentric and allocentric coordinates or environments with or without people. A total of 106 individuals (53 with agoraphobia and 53 controls) navigated in a virtual square to acquire spatial information that included the recognition of landmarks and the relationship between landmarks and themselves (egocentric coordinates) and independent of themselves (allocentric coordinates). Half of the participants in both groups navigated in a square without people, and half navigated in a crowded square. They completed a VSWM test in addition to tasks measuring landmark recognition and egocentric and allocentric judgements concerning the explored square. The results showed that individuals with agoraphobia had reduced working memory only when active processing of spatial elements was required, suggesting that they exhibit spatial difficulties particularly in complex spatial tasks requiring them to process information simultaneously. Specifically, VSWM deficits mediated the relationship between agoraphobia and performance in the allocentric judgements. The results are discussed considering the theoretical background of agoraphobia in order to provide useful elements for the early diagnosis of this disorder.


2019 ◽  
Vol 85 (10) ◽  
pp. S57
Author(s):  
Andrea Pelletier-Baldelli ◽  
Alana Campbell ◽  
Joshua Bizzell ◽  
Aysenil Belger

2021 ◽  
Author(s):  
Oliver Ratcliffe ◽  
Kimron Shapiro ◽  
Bernhard P. Staresina

AbstractHow does the human brain manage multiple bits of information to guide goal-directed behaviour? Successful working memory (WM) functioning has consistently been linked to oscillatory power in the theta frequency band (4-8 Hz) over fronto-medial cortex (fronto-medial theta, FMT). Specifically, FMT is thought to reflect the mechanism of an executive sub-system that coordinates maintenance of memory contents in posterior regions. However, direct evidence for the role of FMT in controlling specific WM content is lacking. Here we collected high-density Electroencephalography (EEG) data whilst participants engaged in load-varying WM tasks and then used multivariate decoding methods to examine WM content during the maintenance period. Higher WM load elicited a focal increase in FMT. Importantly, decoding of WM content was driven by posterior/parietal sites, which in turn showed load-induced functional theta coupling with fronto-medial cortex. Finally, we observed a significant slowing of FMT frequency with increasing WM load, consistent with the hypothesised broadening of a theta ‘duty cycle’ to accommodate additional WM items. Together these findings demonstrate that frontal theta orchestrates posterior maintenance of WM content. Moreover, the observed frequency slowing elucidates the function of FMT oscillations by specifically supporting phase-coding accounts of WM.Significance StatementHow does the brain juggle the maintenance of multiple items in working memory (WM)? Here we show that increased WM demands increase theta power (4-8 Hz) in fronto-medial cortex. Interestingly, using a machine learning approach, we found that the content held in WM could be read out not from frontal, but from posterior areas. These areas were in turn functionally coupled with fronto-medial cortex, consistent with the idea that frontal cortex orchestrates WM representations in posterior regions. Finally, we observed that holding an additional item in WM leads to significant slowing of the frontal theta rhythm, supporting computational models that postulate longer ‘duty cycles’ to accommodate additional WM demands.


2017 ◽  
Author(s):  
Ed David John Berry ◽  
Amanda Waterman ◽  
Alan D. Baddeley ◽  
Graham J. Hitch ◽  
Richard John Allen

Recent research has demonstrated that, when instructed to prioritize a serial position in visual working memory, adults are able to boost performance for this selected item, at a cost to non-prioritized items (e.g. Hu et al., 2014). While executive control appears to play an important role in this ability, the increased likelihood of recalling the most recently presented item (i.e. the recency effect) is relatively automatic, possibly driven by perceptual mechanisms. In three experiments 7 to 10-year-old’s ability to prioritize items in working memory was investigated using a sequential visual task (total N = 208). The relationship between individual differences in working memory and performance on the experimental task was also explored. Participants were unable to prioritize the first (Experiments 1 & 2) or final (Experiment 3) item in a 3-item sequence, while large recency effects for the final item were consistently observed across all experiments. The absence of a priority boost across three experiments indicates that children may not have the necessary executive resources to prioritize an item within a visual sequence, when directed to do so. In contrast, the consistent recency boosts for the final item indicate that children show automatic memory benefits for the most recently encountered stimulus. Finally, for the baseline condition in which children were instructed to remember all three items equally, additional working memory measures predicted performance at the first and second but not the third serial position, further supporting the proposed automaticity of the recency effect in visual working memory.


2021 ◽  
pp. 1-14
Author(s):  
Khoi D. Vo ◽  
Audrey Siqi-Liu ◽  
Alondra Chaire ◽  
Sophia Li ◽  
Elise Demeter ◽  
...  

Abstract Attention and working memory (WM) have classically been considered as two separate cognitive functions, but more recent theories have conceptualized them as operating on shared representations and being distinguished primarily by whether attention is directed internally (WM) or externally (attention, traditionally defined). Supporting this idea, a recent behavioral study documented a “WM Stroop effect,” showing that maintaining a color word in WM impacts perceptual color-naming performance to the same degree as presenting the color word externally in the classic Stroop task. Here, we employed ERPs to examine the neural processes underlying this WM Stroop task compared to those in the classic Stroop and in a WM-control task. Based on the assumption that holding a color word in WM would (pre-)activate the same color representation as by externally presenting that color word, we hypothesized that the neural cascade of conflict–control processes would occur more rapidly in the WM Stroop than in the classic Stroop task. Our behavioral results replicated equivalent interference behavioral effects for the WM and classic Stroop tasks. Importantly, however, the ERP signatures of conflict detection and resolution displayed substantially shorter latencies in the WM Stroop task. Moreover, delay-period conflict in the WM Stroop task, but not in the WM control task, impacted the ERP and performance measures for the WM probe stimuli. Together, these findings provide new insights into how the brain processes conflict between internal representations and external stimuli, and they support the view of shared representations between internally held WM content and attentional processing of external stimuli.


Sign in / Sign up

Export Citation Format

Share Document