scholarly journals Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Guo ◽  
Qun Gao ◽  
Mengting Yuan ◽  
Gangsheng Wang ◽  
Xishu Zhou ◽  
...  

Abstract Soil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. However, its feedbacks to climate warming and underlying microbial mechanisms are still poorly understood. Here we show that the temperature sensitivity of soil microbial respiration (Q10) in a temperate grassland ecosystem persistently decreases by 12.0 ± 3.7% across 7 years of warming. Also, the shifts of microbial communities play critical roles in regulating thermal adaptation of soil respiration. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improves the modeling performance of soil microbial respiration by 5–19%, and reduces model parametric uncertainty by 55–71%. In addition, modeling analyses show that the microbial thermal adaptation can lead to considerably less heterotrophic respiration (11.6 ± 7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.

2020 ◽  
Author(s):  
Xue Guo ◽  
Qun Gao ◽  
Mengting Yuan ◽  
Gangsheng Wang ◽  
Xishu Zhou ◽  
...  

AbstractSoil microbial respiration is an important source of uncertainty in projecting future climate and carbon (C) cycle feedbacks. Despite intensive studies for two decades, the magnitude, direction, and duration of such feedbacks are uncertain, and their underlying microbial mechanisms are still poorly understood. Here we examined the responses of soil respiration and microbial community structure to long-term experimental warming in a temperate grassland ecosystem. Our results indicated that the temperature sensitivity of soil microbial respiration (i.e., Q10) persistently decreased by 12.0±3.7% across 7 years of warming. Integrated metagenomic and functional analyses showed that microbial community adaptation played critical roles in regulating respiratory acclimation. Incorporating microbial functional gene abundance data into a microbially-enabled ecosystem model significantly improved the modeling performance of soil microbial respiration by 5–19%, compared to the traditional non-microbial model. Model parametric uncertainty was also reduced by 55–71% when gene abundances were used. In addition, our modeling analyses suggested that decreased temperature sensitivity could lead to considerably less heterotrophic respiration (11.6±7.5%), and hence less soil C loss. If such microbially mediated dampening effects occur generally across different spatial and temporal scales, the potential positive feedback of soil microbial respiration in response to climate warming may be less than previously predicted.


2018 ◽  
Vol 38 (1) ◽  
Author(s):  
沈瑞昌 SHEN Ruichang ◽  
徐明 XU Ming ◽  
方长明 FANG Changming ◽  
陈家宽 CHEN Jiakuan

2020 ◽  
Vol 34 (6) ◽  
Author(s):  
Jian‐Sheng Ye ◽  
Mark A. Bradford ◽  
Fernando T. Maestre ◽  
Feng‐Min Li ◽  
Pablo García‐Palacios

2016 ◽  
Author(s):  
Bing Song ◽  
Jian Sun ◽  
Qingping Zhou ◽  
Ning Zong ◽  
Shuli Niu

Abstract. The rising nitrogen (N) deposition could increase ecosystem net carbon (C) sequestration by stimulating plant productivity. However, how net ecosystem CO2 exchange (NEE) and its components respond dynamically to rising N deposition is far from clear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32 gN m−2 year−1) in an alpine meadow on the Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an increasing N loading gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER), and gross ecosystem production (GEP) all increased linearly with N addition rates in the first year of treatment, but shifted to N saturation responses in the second year with the highest NEE (−7.77 ± 0.48 µmol m−2 s−1) occurring under N addition rate of 8 gN m−2 year−1. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth, under high N addition. The saturation response of ER was mainly due to decreases in aboveground plant respiration and soil microbial respiration under high N addition, while the N-induced reduction in soil pH caused declines in soil microbial respiration. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. The results reveal temporal dynamics of N impacts and the rapid shift of ecosystem C cycle from N limitation to N saturation. These findings are helpful for better understanding and model projection of future terrestrial C sequestration under rising N deposition.


2019 ◽  
Vol 3 (2) ◽  
pp. 223-231 ◽  
Author(s):  
Mark A. Bradford ◽  
Rebecca L. McCulley ◽  
Thomas. W. Crowther ◽  
Emily E. Oldfield ◽  
Stephen A. Wood ◽  
...  

2009 ◽  
Vol 12 (7) ◽  
pp. E12-E14 ◽  
Author(s):  
Iain P. Hartley ◽  
David W. Hopkins ◽  
Mark H. Garnett ◽  
Martin Sommerkorn ◽  
Philip A. Wookey

2008 ◽  
Vol 11 (12) ◽  
pp. 1316-1327 ◽  
Author(s):  
Mark A. Bradford ◽  
Christian A. Davies ◽  
Serita D. Frey ◽  
Thomas R. Maddox ◽  
Jerry M. Melillo ◽  
...  

2021 ◽  
Author(s):  
Shahab IbrahimPour ◽  
Alireza KhavaninZadeh ◽  
Ruhollah Taghizadeh mehrjardi ◽  
Hans De Boeck ◽  
Alvina Gul

Abstract Destructive mining operations are affecting large areas of natural ecosystems, especially in arid lands. The present study aims at investigating the impact of iron mine exploitation on vegetation and soil in Nodoushan (Yazd province, central Iran). Based on the dominant wind, topography, slope, vegetation and soil of the area, soil and vegetation parameters close to ​the mine were recorded and analyzed according to the distance from the mine. In order to obtain the vegetation cover, a transect and plot on the windward and leeward side of the mine, with 100 m intervals and three replicates at each sampling location was used, yielding 96 soil samples. The amount of dust on the vegetation, the seed weight and seed germination rate of Artemisia sp. as the dominant species within the area, and the soil microbial respiration were measured. The relationship between vegetation cover and distance from the mine was not linear, which was due to an interplay between pollution from the mine and local grazing, while other factors did increase or decrease linearly. The results showed that, as the distance from the mine increased, the weight of 1000 seeds of Artemisia sp. was significantly increased from 271 to 494 mg and seed germination rate and soil microbial respiration were significantly increased from 11.7 to 48.4 % and from 4.5 to 5.9 mg CO2 g− 1 soil day− 1 respectively, while the amount of dust significantly decreased from 43.5 to 6 mg (g plant)−1 between the distance of 100 to 600 m from the mine in the leeward direction. A similar trend was observed in the windward side, though negative effects were lower compared to the same distance along the leeward sample locations. The direct and indirect effects on plant growth and health from mining impacts generally decreased linearly with increasing distance from the mine, up to at least 600 m. Our study serves as a showcase for the potential of bio-indicators as a cost-effective method for assessing impacts of mining activities on the surrounding environment.


Sign in / Sign up

Export Citation Format

Share Document