scholarly journals Prevalent and sex-biased breathing patterns modify functional connectivity MRI in young adults

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles J. Lynch ◽  
Benjamin M. Silver ◽  
Marc J. Dubin ◽  
Alex Martin ◽  
Henning U. Voss ◽  
...  

Abstract Resting state functional connectivity magnetic resonance imaging (fMRI) is a tool for investigating human brain organization. Here we identify, visually and algorithmically, two prevalent influences on fMRI signals during 440 h of resting state scans in 440 healthy young adults, both caused by deviations from normal breathing which we term deep breaths and bursts. The two respiratory patterns have distinct influences on fMRI signals and signal covariance, distinct timescales, distinct cardiovascular correlates, and distinct tendencies to manifest by sex. Deep breaths are not sex-biased. Bursts, which are serial taperings of respiratory depth typically spanning minutes at a time, are more common in males. Bursts share features of chemoreflex-driven clinical breathing patterns that also occur primarily in males, with notable neurological, psychiatric, medical, and lifespan associations. These results identify common breathing patterns in healthy young adults with distinct influences on functional connectivity and an ability to differentially influence resting state fMRI studies.

2020 ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Ming Cheng ◽  
...  

Abstract Background: This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in Fibromyalgia patients and the modulation effect of effective treatments. Methods: Fibromyalgia patients and matched healthy controls (HC’s) were recruited. Resting state fMRI data were collected from fibromyalgia patients before and after a 12-week Tai Chi intervention and once from HC’s. Results: Data analysis showed that fibromyalgia patients displayed significantly decreased medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to HC’s at baseline. After the intervention, fibromyalgia patients showed increased (normalized) MH rsFC in the thalamus and amygdala. Effective connectivity analysis showed disrupted MH and thalamus interaction in fibromyalgia, which nonetheless could be partially restored by Tai Chi. Conclusions: Elucidating the role of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of new treatment methods for this prevalent disorder. Trial registration: Trial registration ClinicalTrials.gov Identifier: NCT02407665. Registered 3 April 2015 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02407665


2017 ◽  
Vol 11 ◽  
Author(s):  
Hiroki Togo ◽  
Jaroslav Rokicki ◽  
Kenji Yoshinaga ◽  
Tatsuhiro Hisatsune ◽  
Hiroshi Matsuda ◽  
...  

NeuroImage ◽  
2014 ◽  
Vol 90 ◽  
pp. 235-245 ◽  
Author(s):  
Kevin C. Chan ◽  
Shu-Juan Fan ◽  
Russell W. Chan ◽  
Joe S. Cheng ◽  
Iris Y. Zhou ◽  
...  

2018 ◽  
Vol 83 (9) ◽  
pp. S255
Author(s):  
Laura Daedelow ◽  
Ilya M. Veer ◽  
Nicole Y.L. Oei ◽  
Jakob Kaminski ◽  
Andreas Heinz ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


2015 ◽  
Vol 21 (3) ◽  
pp. 743-751 ◽  
Author(s):  
Jin-Tao Zhang ◽  
Yuan-Wei Yao ◽  
Chiang-Shan R. Li ◽  
Yu-Feng Zang ◽  
Zi-Jiao Shen ◽  
...  

2019 ◽  
Vol 33 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Jue Wang ◽  
Hai-Jiang Meng ◽  
Gong-Jun Ji ◽  
Ying Jing ◽  
Hong-Xiao Wang ◽  
...  

Abstract Both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have been used to non-invasively localize the human motor functional area. These locations can be clinically used as stimulation target of TMS treatment. However, it has been reported that the finger tapping fMRI activation and TMS hotspot were not well-overlapped. The aim of the current study was to measure the distance between the finger tapping fMRI activation and the TMS hotspot, and more importantly, to compare the network difference by using resting-state fMRI. Thirty healthy participants underwent resting-state fMRI, task fMRI, and then TMS hotspot localization. We found significant difference of locations between finger tapping fMRI activation and TMS hotspot. Specifically, the finger tapping fMRI activation was more lateral than the TMS hotspot in the premotor area. The fMRI activation peak and TMS hotspot were taken as seeds for resting-state functional connectivity analyses. Compared with TMS hotspot, finger tapping fMRI activation peak showed more intensive functional connectivity with, e.g., the bilateral premotor, insula, putamen, and right globus pallidus. The findings more intensive networks of finger tapping activation than TMS hotspot suggest that TMS treatment targeting on the fMRI activation area might result in more remote effects and would be more helpful for TMS treatment on movement disorders.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S4-S4
Author(s):  
Jose Maximo ◽  
Frederic Briend ◽  
William Armstrong ◽  
Nina Kraguljac ◽  
Adrienne Lahti

Abstract Background Schizophrenia is thought to be a disorder of brain dysconnectivity. An imbalance between cortical excitation/inhibition is also implicated, but the link between these abnormalities remains unclear. The present study used resting state functional connectivity MRI (rs-fcMRI) and magnetic resonance spectroscopy (MRS) to investigate how measurements of glutamate + glutamine (Glx) in the anterior cingulate cortex (ACC) relate to rs-fcMRI in medication-naïve first episode psychosis (FEP) subjects compared to healthy controls (HC). Based on our previous findings, we hypothesized that in HC would show correlations between Glx and rs-fMRI in the salience and default mode network, but these relationships would be altered in FEP. Methods Data from 53 HC (age = 24.70 ±6.23, 34M/19F) and 60 FEP (age = 24.08 ±6.29, 38M/22F) were analyzed. To obtain MRS data, a voxel was placed in the ACC (PRESS, TR/TE = 2000/80ms). Metabolite concentrations were quantified with respect to internal water using the AMARES algorithm in jMRUI. rs-fMRI data were processed using a standard preprocessing pipeline in the CONN toolbox. BOLD signal from a priori brain regions of interest from posterior cingulate cortex (default mode network, DMN), anterior cingulate cortex (salience network, SN), and right posterior parietal cortex (central executive network, CEN) were extracted and correlated with the rest of the brain to measure functional connectivity (FC). Group analyses were performed on Glx, FC, and Glx-FC interactions while controlling for age, gender, and motion when applicable. FC and Glx-FC analyses were performed using small volume correction [(p < 0.01, threshold-free cluster enhancement corrected (TFCE)]. Results No significant between-group differences were found in Glx concentration in the ACC [F(1, 108) = 0.34, p = 0.56], but reduced FC was found on each network in FEP compared to HC (pTFCE corrected). Group Glx-FC interactions were found in the form of positive correlations between Glx and FC in DMN and SN in the HC group, but not in FEP; and negative correlations in CEN in HC, but not in FEP. Discussion While we did not find significant group differences in ACC Glx measurements, ACC Glx modulated FC differentially in FEP and HC. Positive correlations between Glx and FC were found in the SN and DMN, suggesting long range modulation of the two networks in HC, but not in FEP. Additionally, negative correlations between Glx and FC were found in CEN in HC, but not in FEP. Overall, these results suggest that even in the absence of group differences in Glx concentration, the long-range modulation of these 3 networks by ACC Glx is altered in FEP.


Sign in / Sign up

Export Citation Format

Share Document