scholarly journals Altered hypothalamus functional connectivity with limbic system in fibromyalgia and the modulation effect of intervention

2020 ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Ming Cheng ◽  
...  

Abstract Background: This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in Fibromyalgia patients and the modulation effect of effective treatments. Methods: Fibromyalgia patients and matched healthy controls (HC’s) were recruited. Resting state fMRI data were collected from fibromyalgia patients before and after a 12-week Tai Chi intervention and once from HC’s. Results: Data analysis showed that fibromyalgia patients displayed significantly decreased medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to HC’s at baseline. After the intervention, fibromyalgia patients showed increased (normalized) MH rsFC in the thalamus and amygdala. Effective connectivity analysis showed disrupted MH and thalamus interaction in fibromyalgia, which nonetheless could be partially restored by Tai Chi. Conclusions: Elucidating the role of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of new treatment methods for this prevalent disorder. Trial registration: Trial registration ClinicalTrials.gov Identifier: NCT02407665. Registered 3 April 2015 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02407665

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Cheng Ming ◽  
...  

AbstractThe hypothalamus links the nervous system to the endocrine system and plays a crucial role in maintaining the human body's homeostasis. This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in fibromyalgia patients. 24 Fibromyalgia patients and 24 matched healthy controls (HCs) were recruited. Resting state fMRI data were collected from the fibromyalgia patients and HC’s. Fibromyalgia patients went through a second scan after 12 weeks of Tai Chi mind–body intervention. Data analysis showed that fibromyalgia patients displayed less medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to the functional connectivity in the HCs. After the Tai Chi mind–body intervention, fibromyalgia patients showed increased MH rsFC with the thalamus and amygdala accompanied by clinical improvement. Effective connectivity analysis showed disrupted MH and thalamus interaction in the fibromyalgia patients, which was altered by mind–body exercise. Our findings suggest that fibromyalgia is associated with altered functional connectivity within the diencephalon and limbic system. Elucidating the roles of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of a new biomarker and effective treatment methods for this prevalent disorder.Trial Registration ClinicalTrials.gov, NCT02407665. Registered: 3 April 2015, https://clinicaltrials.gov/ct2/show/NCT02407665?term=NCT02407665&draw=2&rank=1


2019 ◽  
Author(s):  
Matthew A. Scult ◽  
David Marc Fresco ◽  
Faith Gunning ◽  
Conor Liston ◽  
Saren Seeley ◽  
...  

Emotion Regulation Therapy (ERT) is an efficacious treatment for distress disorders (i.e. depression and anxiety), predicated on a conceptual model wherein difficult to treat distress arises from intense emotionality (e.g., neuroticism, dispositional negativity) and is prolonged by negative self-referentiality (e.g., worry, rumination). Individuals with distress disorders exhibit disruptions in two corresponding brain networks including the salience network (i.e., “SN”) reflecting emotion/motivation and the default mode network (i.e., “DMN”) reflecting self-referentiality. Using resting-state functional connectivity analyses, seeded with primary regions in each of these networks, we investigated whether ERT was associated with theoretically consistent changes across nodes of these networks and whether these changes related to improvements in clinical outcomes. This study examined 21 generalized anxiety disorder (GAD) patients (with and without major depressive disorder (MDD)) drawn from a larger intervention trial (Renna et al., 2018), who completed resting state fMRI scans before and after receiving 16 sessions of ERT. We utilized seed-based connectivity analysis with seeds in the PCC, right anterior insula, and right posterior insula, to investigate whether ERT was associated with changes in connectivity of nodes of the DMN and SN networks with changes across the brain. Findings revealed statistically significant treatment linked changes in both the DMN and SN network nodes, and these changes were associated with clinical improvement corresponding to medium effect sizes. The results are discussed in light of a nuanced understanding of the role of connectivity changes in GAD and MDD, and begin to provide neural network support for the hypothesized treatment model predicated by ERT.


2019 ◽  
Author(s):  
Hannes Almgren ◽  
Frederik Van de Steen ◽  
Adeel Razi ◽  
Karl Friston ◽  
Daniele Marinazzo

AbstractThe influence of the global BOLD signal on resting state functional connectivity in fMRI data remains a topic of debate, with little consensus. In this study, we assessed the effects of global signal regression (GSR) on effective connectivity within and between resting-state networks – as estimated with dynamic causal modelling (DCM) for resting state fMRI (rsfMRI). DCM incorporates a forward (generative) model that quantifies the contribution of different types of noise (including global measurement noise), effective connectivity, and (neuro)vascular processes to functional connectivity measurements. DCM analyses were applied to two different designs; namely, longitudinal and cross-sectional designs. In the modelling of longitudinal designs, we included four extensive longitudinal resting state fMRI datasets with a total number of 20 subjects. In the analysis of cross-sectional designs, we used rsfMRI data from 361 subjects from the Human Connectome Project. We hypothesized that (1) GSR would have no discernible impact on effective connectivity estimated with DCM, and (2) GSR would be reflected in the parameters representing global measurement noise. Additionally, we performed comparative analyses of the informative value of data with and without GSR. Our results showed negligible to small effects of GSR on connectivity within small (separately estimated) RSNs. For between-network connectivity, we found two important effects: the effect of GSR on between-network connectivity (averaged over all connections) was negligible to small, while the effect of GSR on individual connections was non-negligible. Contrary to our expectations, we found either no effect (in the longitudinal designs) or a non-specific (cross-sectional design) effect of GSR on parameters representing (global) measurement noise. Data without GSR were found to be more informative than data with GSR; however, in small resting state networks the precision of posterior estimates was greater using data after GSR. In conclusion, GSR is a minor concern in DCM studies; however, individual between-network connections (as opposed to average between-network connectivity) and noise parameters should be interpreted quantitatively with some caution. The Kullback-Leibler divergence of the posterior from the prior, together with the precision of posterior estimates, might offer a useful measure to assess the appropriateness of GSR, when nuancing data features in resting state fMRI.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


2017 ◽  
Vol 38 (5) ◽  
pp. 2384-2397 ◽  
Author(s):  
Yu-Chen Chen ◽  
Wenqing Xia ◽  
Huiyou Chen ◽  
Yuan Feng ◽  
Jin-Jing Xu ◽  
...  

2019 ◽  
Vol 33 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Jue Wang ◽  
Hai-Jiang Meng ◽  
Gong-Jun Ji ◽  
Ying Jing ◽  
Hong-Xiao Wang ◽  
...  

Abstract Both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have been used to non-invasively localize the human motor functional area. These locations can be clinically used as stimulation target of TMS treatment. However, it has been reported that the finger tapping fMRI activation and TMS hotspot were not well-overlapped. The aim of the current study was to measure the distance between the finger tapping fMRI activation and the TMS hotspot, and more importantly, to compare the network difference by using resting-state fMRI. Thirty healthy participants underwent resting-state fMRI, task fMRI, and then TMS hotspot localization. We found significant difference of locations between finger tapping fMRI activation and TMS hotspot. Specifically, the finger tapping fMRI activation was more lateral than the TMS hotspot in the premotor area. The fMRI activation peak and TMS hotspot were taken as seeds for resting-state functional connectivity analyses. Compared with TMS hotspot, finger tapping fMRI activation peak showed more intensive functional connectivity with, e.g., the bilateral premotor, insula, putamen, and right globus pallidus. The findings more intensive networks of finger tapping activation than TMS hotspot suggest that TMS treatment targeting on the fMRI activation area might result in more remote effects and would be more helpful for TMS treatment on movement disorders.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles J. Lynch ◽  
Benjamin M. Silver ◽  
Marc J. Dubin ◽  
Alex Martin ◽  
Henning U. Voss ◽  
...  

Abstract Resting state functional connectivity magnetic resonance imaging (fMRI) is a tool for investigating human brain organization. Here we identify, visually and algorithmically, two prevalent influences on fMRI signals during 440 h of resting state scans in 440 healthy young adults, both caused by deviations from normal breathing which we term deep breaths and bursts. The two respiratory patterns have distinct influences on fMRI signals and signal covariance, distinct timescales, distinct cardiovascular correlates, and distinct tendencies to manifest by sex. Deep breaths are not sex-biased. Bursts, which are serial taperings of respiratory depth typically spanning minutes at a time, are more common in males. Bursts share features of chemoreflex-driven clinical breathing patterns that also occur primarily in males, with notable neurological, psychiatric, medical, and lifespan associations. These results identify common breathing patterns in healthy young adults with distinct influences on functional connectivity and an ability to differentially influence resting state fMRI studies.


2019 ◽  
Vol 9 (6) ◽  
pp. 1095-1102
Author(s):  
Jian Yang ◽  
Xu Mao ◽  
Ning Liu ◽  
Ning Zhong

Resting-state functional connectivity (FC) changes dynamically and major depressive disorder (MDD) has abnormality in functional connectivity networks (FCNs), but few existing resting-state fMRI study on MDD utilizes the dynamics, especially for identifying depressive individuals from healthy controls. In this paper, we propose a methodological procedure for differential diagnosis of depression, called HN3D, which is based on high-order functional connectivity networks (HFCN). Firstly, HN3D extracts time series by independent component analysis, and partitions them into overlapped short series by sliding time window. Secondly, it constructs a FCN for each time window and concatenates correlation matrices of all FCNs to generate correlation time series. Then, correlation time series are grouped into different clusters and high-order correlations for HFCN is calculated based on their means. Finally, graph based features of HFCNs are extracted and selected for a linear discriminative classifier. Tested on 21 healthy controls and 20 MDD patients, HN3D achieved its best 100% classification accuracy, which is much higher than results based on stationary FCNs. In addition, most discriminative components of HN3D locate in default mode network and visual network, which are consistent with existing stationary-based results on depression. Though HN3D needs to be studied further, it is helpful for the differential diagnosis of depression and might have potentiality in identifying relevant biomarkers.


2017 ◽  
Vol 1 (3) ◽  
pp. 222-241 ◽  
Author(s):  
Adeel Razi ◽  
Mohamed L. Seghier ◽  
Yuan Zhou ◽  
Peter McColgan ◽  
Peter Zeidman ◽  
...  

This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity. This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of Bayesian model reduction to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM—with functional connectivity priors—is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.


Sign in / Sign up

Export Citation Format

Share Document