scholarly journals Semiconductor-less vertical transistor with ION/IOFF of 106

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jun-Ho Lee ◽  
Dong Hoon Shin ◽  
Heejun Yang ◽  
Nae Bong Jeong ◽  
Do-Hyun Park ◽  
...  

AbstractSemiconductors have long been perceived as a prerequisite for solid-state transistors. Although switching principles for nanometer-scale devices have emerged based on the deployment of two-dimensional (2D) van der Waals heterostructures, tunneling and ballistic currents through short channels are difficult to control, and semiconducting channel materials remain indispensable for practical switching. In this study, we report a semiconductor-less solid-state electronic device that exhibits an industry-applicable switching of the ballistic current. This device modulates the field emission barrier height across the graphene-hexagonal boron nitride interface with ION/IOFF of 106 obtained from the transfer curves and adjustable intrinsic gain up to 4, and exhibits unprecedented current stability in temperature range of 15–400 K. The vertical device operation can be optimized with the capacitive coupling in the device geometry. The semiconductor-less switching resolves the long-standing issue of temperature-dependent device performance, thereby extending the potential of 2D van der Waals devices to applications in extreme environments.

2003 ◽  
Vol 32 (11) ◽  
pp. 1002-1003 ◽  
Author(s):  
Seiji Watase ◽  
Takayuki Kitamura ◽  
Nobuko Kanehisa ◽  
Masami Nakamoto ◽  
Yasushi Kai ◽  
...  

Author(s):  
Zdenek Kolka ◽  
Viera Biolkova ◽  
Otakar Wilfert ◽  
Dalibor Biolek ◽  
Michal Kubicek ◽  
...  

2018 ◽  
Vol 47 (16) ◽  
pp. 6342-6369 ◽  
Author(s):  
Ki Kang Kim ◽  
Hyun Seok Lee ◽  
Young Hee Lee

The construction of large surface area hexagonal boron nitride for van der Waals heterostructures and 2D-layered electronics is reviewed.


2009 ◽  
Vol 479 (4-6) ◽  
pp. 211-217 ◽  
Author(s):  
Masae Takahashi ◽  
Yoshiyuki Kawazoe ◽  
Yoichi Ishikawa ◽  
Hiromasa Ito

2021 ◽  
Author(s):  
Farnoos Farrokhi

The International Technology Roadmap for Silicon (ITRS) predicted that by the year 2016, a high-performance chip could dissipate as much as 300 W/cm² of heat. Another more noticeable thermal issue in IC's is the uneven temperature distribution. Increased power dissipation and greater temperature variation highlight the need for electrothermal analysis of electronic components. The goal of this research is to develop an experimental infrared measurement technique for the thermal and electrothermal analysis of electronic circuits. The objective of the electrothermal analysis is to represent the behavior of the temperature dependent characteristics of electronic device in near real work condition. An infrared (IR) thermography setup to perform the temperature distribution analysis and power dissipation measurement of the device under test is proposed in this reasearch. The system is based on a transparent oil heatsink which captures the thermal profile and run-time power dissipation from the device under test with a very fine degree of granularity. The proposed setup is used to perform the thermal analysis and power measurement of an Intel Dual Core E2180 processor. The power dissipation of the processor is obtained by calculating and measuring the heat transfer coefficient of the oil heatsink. Moreover, the power consumption of the processor is measured by isolating the current used by the CPU at run time. A three-dimensional fininte element thermal model is developed to simulate the thermal properties of the processor. The results obtained using this simulation is compared to the experimental results from IR thermography. A methodology to perform electrothermal analysis on integrated circuits is introduced. This method is based on coupling a standard electrical simulator, which is often used in the design process, and IR thermography system through an efficient interface program. The proposed method is capable of updating the temperature dependent parameters of device in near real time. The proposed method is applied to perform electrothermal analysis of a power MOSFET to measure the temperature distribution and the device performance. The DC characteristics of the device are investigated. The obtained results indicated that the operating point, I-V characteristics and power dissipation of the MOSFET vary significantly with temperature.


Sign in / Sign up

Export Citation Format

Share Document