scholarly journals Autocatalytic photoredox Chan-Lam coupling of free diaryl sulfoximines with arylboronic acids

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cong Wang ◽  
Hui Zhang ◽  
Lucille A. Wells ◽  
Tian Liu ◽  
Tingting Meng ◽  
...  

AbstractN-Arylation of NH-sulfoximines represents an appealing approach to access N-aryl sulfoximines, but has not been successfully applied to NH-diaryl sulfoximines. Herein, a copper-catalyzed photoredox dehydrogenative Chan-Lam coupling of free diaryl sulfoximines and arylboronic acids is described. This neutral and ligand-free coupling is initiated by ambient light-induced copper-catalyzed single-electron reduction of NH-sulfoximines. This electron transfer route circumvents the sacrificial oxidant employed in traditional Chan-Lam coupling reactions, increasing the environmental friendliness of this process. Instead, dihydrogen gas forms as a byproduct of this reaction. Mechanistic investigations also reveal a unique autocatalysis process. The C–N coupling products, N-arylated sulfoximines, serve as ligands along with NH-sulfoximine to bind to the copper species, generating the photocatalyst. DFT calculations reveal that both the NH-sulfoximine substrate and the N-aryl product can ligate the copper accounting for the observed autocatalysis. Two energetically viable stepwise pathways were located wherein the copper facilitates hydrogen atom abstraction from the NH-sulfoximine and the ethanol solvent to produce dihydrogen. The protocol described herein represents an appealing alternative strategy to the classic oxidative Chan-Lam reaction, allowing greater substrate generality as well as the elimination of byproduct formation from oxidants.

Synlett ◽  
2020 ◽  
Author(s):  
Tomohiro Yasukawa ◽  
Shu Kobayashi ◽  
Zhiyuan Zhu ◽  
Yasuhiro Yamashita

Polysilane/alumina-supported palladium nanoparticle catalyzed carbonylative Suzuki–Miyaura coupling reactions under ligand-free conditions have been developed to synthesize diaryl ketones. High yields and selectivities were achieved even with low catalyst loading under atmospheric pressure of CO gas. A variety of aryl iodides and arylboronic acids could be utilized to afford the diaryl ketones in excellent yields. Moreover, the ligand-free immobilized palladium nanoparticles could be recovered by simple filtration and the catalytic activity could be maintained for several runs.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2911
Author(s):  
Miriam Navarrete-Miguel ◽  
Antonio Francés-Monerris ◽  
Miguel A. Miranda ◽  
Virginie Lhiaubet-Vallet ◽  
Daniel Roca-Sanjuán

Photocycloreversion plays a central role in the study of the repair of DNA lesions, reverting them into the original pyrimidine nucleobases. Particularly, among the proposed mechanisms for the repair of DNA (6-4) photoproducts by photolyases, it has been suggested that it takes place through an intermediate characterized by a four-membered heterocyclic oxetane or azetidine ring, whose opening requires the reduction of the fused nucleobases. The specific role of this electron transfer step and its impact on the ring opening energetics remain to be understood. These processes are studied herein by means of quantum-chemical calculations on the two azetidine stereoisomers obtained from photocycloaddition between 6-azauracil and cyclohexene. First, we analyze the efficiency of the electron-transfer processes by computing the redox properties of the azetidine isomers as well as those of a series of aromatic photosensitizers acting as photoreductants and photo-oxidants. We find certain stereodifferentiation favoring oxidation of the cis-isomer, in agreement with previous experimental data. Second, we determine the reaction profiles of the ring-opening mechanism of the cationic, neutral, and anionic systems and assess their feasibility based on their energy barrier heights and the stability of the reactants and products. Results show that oxidation largely decreases the ring-opening energy barrier for both stereoisomers, even though the process is forecast as too slow to be competitive. Conversely, one-electron reduction dramatically facilitates the ring opening of the azetidine heterocycle. Considering the overall quantum-chemistry findings, N,N-dimethylaniline is proposed as an efficient photosensitizer to trigger the photoinduced cycloreversion of the DNA lesion model.


Sign in / Sign up

Export Citation Format

Share Document