scholarly journals Cavity-enhanced microwave readout of a solid-state spin sensor

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Erik R. Eisenach ◽  
John F. Barry ◽  
Michael F. O’Keeffe ◽  
Jennifer M. Schloss ◽  
Matthew H. Steinecker ◽  
...  

AbstractOvercoming poor readout is an increasingly urgent challenge for devices based on solid-state spin defects, particularly given their rapid adoption in quantum sensing, quantum information, and tests of fundamental physics. However, in spite of experimental progress in specific systems, solid-state spin sensors still lack a universal, high-fidelity readout technique. Here we demonstrate high-fidelity, room-temperature readout of an ensemble of nitrogen-vacancy centers via strong coupling to a dielectric microwave cavity, building on similar techniques commonly applied in cryogenic circuit cavity quantum electrodynamics. This strong collective interaction allows the spin ensemble’s microwave transition to be probed directly, thereby overcoming the optical photon shot noise limitations of conventional fluorescence readout. Applying this technique to magnetometry, we show magnetic sensitivity approaching the Johnson–Nyquist noise limit of the system. Our results pave a clear path to achieve unity readout fidelity of solid-state spin sensors through increased ensemble size, reduced spin-resonance linewidth, or improved cavity quality factor.

2021 ◽  
Vol 7 (32) ◽  
pp. eabg9204
Author(s):  
Tianyu Xie ◽  
Zhiyuan Zhao ◽  
Xi Kong ◽  
Wenchao Ma ◽  
Mengqi Wang ◽  
...  

The use of entangled sensors improves the precision limit from the standard quantum limit (SQL) to the Heisenberg limit. Most previous experiments beating the SQL are performed on the sensors that are well isolated under extreme conditions. Here, we demonstrate a sub-SQL interferometer at ambient conditions by using a multispin system, namely, the nitrogen-vacancy (NV) defect in diamond. We achieve two-spin interference with a phase sensitivity of 1.79 ± 0.06 dB beyond the SQL and three-spin interference with a phase sensitivity of 2.77 ± 0.10 dB. Besides, a magnetic sensitivity of 0.87 ± 0.09 dB beyond the SQL is achieved by two-spin interference for detecting a real magnetic field. Particularly, the deterministic and joint initialization of NV negative state, NV electron spin, and two nuclear spins is realized at room temperature. The techniques used here are of fundamental importance for quantum sensing and computing, and naturally applicable to other solid-state spin systems.


Nanophotonics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 641-654 ◽  
Author(s):  
Dario Ballarini ◽  
Simone De Liberato

AbstractFollowing the initial success of cavity quantum electrodynamics in atomic systems, strong coupling between light and matter excitations is now achieved in several solid-state set-ups. In those systems, the possibility to engineer quantum emitters and resonators with very different characteristics has allowed access to novel nonlinear and non-perturbative phenomena of both fundamental and applied interest. In this article, we will review some advances in the field of solid-state cavity quantum electrodynamics, focussing on the scaling of the relevant figures of merit in the transition from microcavities to sub-wavelength confinement.


Science ◽  
2020 ◽  
Vol 370 (6516) ◽  
pp. 592-595
Author(s):  
Songtao Chen ◽  
Mouktik Raha ◽  
Christopher M. Phenicie ◽  
Salim Ourari ◽  
Jeff D. Thompson

Solid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er3+) ions, within the subwavelength volume of a single, silicon photonic crystal cavity. We also demonstrate subwavelength control over coherent spin rotations by using an optical AC Stark shift. Our approach may be scaled to large numbers of ions with arbitrarily small separation and is a step toward realizing strongly interacting atomic defect ensembles with applications to quantum information processing and fundamental studies of many-body dynamics.


2009 ◽  
Vol 07 (03) ◽  
pp. 669-680
Author(s):  
CHUAN-LONG LIU ◽  
YAN-WEI WANG ◽  
YI-ZHUANG ZHENG

A scheme for realizing the non-local Toffoli gate among three spatially separated nodes through cavity quantum electrodynamics (C-QED) is presented. The scheme can obtain high fidelity in the current C-QED system. With entangled qubits as quantum channels, the operation is resistive to actual environment noise.


Sign in / Sign up

Export Citation Format

Share Document