scholarly journals An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingru Wang ◽  
Na Fang ◽  
Juan Xiong ◽  
Yuanjiao Du ◽  
Yue Cao ◽  
...  

AbstractUpon starvation, cells rewire their metabolism, switching from glucose-based metabolism to mitochondrial oxidation of fatty acids, which require the transfer of FAs from lipid droplets (LDs) to mitochondria at mitochondria−LD membrane contact sites (MCSs). However, factors responsible for FA transfer at these MCSs remain uncharacterized. Here, we demonstrate that vacuolar protein sorting-associated protein 13D (VPS13D), loss-of-function mutations of which cause spastic ataxia, coordinates FA trafficking in conjunction with the endosomal sorting complex required for transport (ESCRT) protein tumor susceptibility 101 (TSG101). The VPS13 adaptor-binding domain of VPS13D and TSG101 directly remodels LD membranes in a cooperative manner. The lipid transfer domain of human VPS13D binds glycerophospholipids and FAs in vitro. Depletion of VPS13D, TSG101, or ESCRT-III proteins inhibits FA trafficking from LDs to mitochondria. Our findings suggest that VPS13D mediates the ESCRT-dependent remodeling of LD membranes to facilitate FA transfer at mitochondria-LD contacts.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

AbstractMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.


2021 ◽  
Author(s):  
Sukrut Kamerkar ◽  
Jagjeet Singh ◽  
Subham Tripathy ◽  
Hemangi Bhonsle ◽  
Mukesh Kumar ◽  
...  

Coordinated cell function requires inter-organelle communication across Membrane Contact Sites (MCS). Here we deposit ER-enriched microsomes purified from rat liver or from cultured cells on a coverslip in the form of a continuous planar membrane. We visualize real-time protein and lipid exchanges across MCS that form between this ER-mimicking membrane and lipid droplets purified from rat liver. An Optical trap is used to demonstrate physical tethering of individual lipid droplets to the ER-mimicking membrane at MCS, and to directly measure the strength of this tether. In-vitro MCS formation changes dramatically in response to metabolic state and immune activation in the animal. Surprisingly, we find that the Rab18 GTPase and Phosphatidic acid are common molecular factors to control both of these pathways. This assay could possibly be adapted to interrogate MCS formation between other membranes (e.g. mitochondria, peroxisomes, endosomes etc.), and abnormalities therein that cause neurological, metabolic and pathogenic diseases.


2021 ◽  
Author(s):  
Valentin Guyard ◽  
Vera F Monteiro-Cardoso ◽  
Mohyeddine Omrane ◽  
Cecile Sauvanet ◽  
Audrey Houcine ◽  
...  

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the Endoplasmic Reticulum (ER). The ER-protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at Mitochondria-Associated ER Membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulate seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for the ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at membrane contact sites.


2020 ◽  
Author(s):  
Eugenio de la Mora ◽  
Manuela Dezi ◽  
Aurélie Di Cicco ◽  
Joëlle Bigay ◽  
Romain Gautier ◽  
...  

SummaryMembrane contact sites (MCS) are subcellular regions where two organelles appose their membranes to exchange small molecules, including lipids. Structural information on how proteins form MCS is scarce. We designed an in vitro MCS with two membranes and a pair of tethering proteins suitable for cryo-tomography analysis. It includes VAP-A, an ER transmembrane protein interacting with a myriad of cytosolic proteins, and oxysterol-binding protein (OSBP), a lipid transfer protein that transports cholesterol from the ER to the trans Golgi network. We show that VAP-A is a highly flexible protein, allowing formation of MCS of variable intermembrane distance. The tethering part of OSBP contains a central, dimeric, and helical T-shape region. We propose that the molecular flexibility of VAP-A enables the recruitment of partners of different sizes within MCS of adjustable thickness, whereas the T geometry of the OSBP dimer facilitates the movement of the two lipid-transfer domains between membranes.


2019 ◽  
Vol 77 (14) ◽  
pp. 2839-2857 ◽  
Author(s):  
Elsa Meneses-Salas ◽  
Ana García-Melero ◽  
Kristiina Kanerva ◽  
Patricia Blanco-Muñoz ◽  
Frederic Morales-Paytuvi ◽  
...  

Abstract Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.


Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641881462
Author(s):  
Samantha K. Dziurdzik ◽  
Björn D.M. Bean ◽  
Elizabeth Conibear

Membrane contact sites are regulated through the controlled recruitment of constituent proteins. Yeast vacuolar protein sorting 13 (Vps13) dynamically localizes to membrane contact sites at endosomes, vacuoles, mitochondria, and the endoplasmic reticulum under different cellular conditions and is recruited to the prospore membrane during meiosis. Prior to our recent work, the mechanism for localization at contact sites was largely unknown. We identified Ypt35 as a novel Vps13 adaptor for endosomes and the nucleus-vacuole junction. Furthermore, we discovered a conserved recruitment motif in Ypt35 and found related motifs in the prospore membrane and mitochondrial adaptors, Spo71 and Mcp1, respectively. All three adaptors compete for binding to a six-repeat region of Vps13, suggesting adaptor competition regulates Vps13 localization. Here, we summarize and discuss the implications of our work, highlighting key outstanding questions.


Contact ◽  
2021 ◽  
Vol 4 ◽  
pp. 251525642110523
Author(s):  
Sarah D. Neuman ◽  
Amy T. Cavanagh ◽  
Arash Bashirullah

Nonvesicular transfer of lipids at membrane contact sites (MCS) has recently emerged as a critical process for cellular function. Lipid transfer proteins (LTPs) mediate this unique transport mechanism, and although several LTPs are known, the cellular complement of these proteins continues to expand. Our recent work has revealed the highly conserved but poorly characterized Hobbit/Hob proteins as novel, putative LTPs at endoplasmic reticulum-plasma membrane (ER-PM) contact sites. Using both S. cerevisiae and D. melanogaster model systems, we demonstrated that the Hob proteins localize to ER-PM contact sites via an N-terminal ER membrane anchor and conserved C-terminal sequences. These conserved C-terminal sequences bind to phosphoinositides (PIPs), and the distribution of PIPs is disrupted in hobbit mutant cells. Recently released structural models of the Hob proteins exhibit remarkable similarity to other bona fide LTPs, like VPS13A and ATG2, that function at MCS. Hobbit is required for viability in Drosophila, suggesting that the Hob proteins are essential genes that may mediate lipid transfer at MCS.


2009 ◽  
Vol 37 (1) ◽  
pp. 156-160 ◽  
Author(s):  
Suman Lata ◽  
Guy Schoehn ◽  
Julianna Solomons ◽  
Ricardo Pires ◽  
Heinrich G. Göttlinger ◽  
...  

ESCRT-III (endosomal sorting complex required for transport III) is required for the formation and abscission of intraluminal endosomal vesicles, which gives rise to multivesicular bodies, budding of some enveloped viruses and cytokinesis. ESCRT-III is composed of 11 members in humans, which, except for one, correspond to the six ESCRT-III-like proteins in yeast. At least CHMP (charged multivesicular body protein) 2A and CHMP3 assemble into helical tubular structures that provide a platform for membrane interaction and VPS (vacuolar protein sorting) 4-catalysed effects leading to disassembly of ESCRT-III CHMP2A–CHMP3 polymers in vitro. Progress towards the understanding of the structures and function of ESCRT-III, its activation, its regulation by accessory factors and its role in abscission of membrane enveloped structures in concert with VPS4 are discussed.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Federica Tavaglione ◽  
Guido Baselli ◽  
Ester Ciociola ◽  
Umberto Vespasiani Gentilucci ◽  
Luca Valenti ◽  
...  

Abstract Abstract: Non-alcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, paralleling the epidemic of obesity and type 2 diabetes. Despite the high prevalence of NAFLD, only a minority of patients progress to NASH and advanced fibrosis. The reasons for this inter-individual variability are not completely understood but can be partially accounted for by genetic risk factors (1). Although several common genetic variants associated with liver disease have been identified, there is still a proportion of NAFLD heritability that remains unknown. The rare rs143545741 C>T variant in the autophagy related 7 (ATG7) gene (P426L) has been associated with a higher risk of progressive NAFLD (2). Interestingly, ATG7 encodes a E1-like ubiquitin activating enzyme which is involved in hepatic lipophagy (3). We hypothesized that the unknown heritability of NAFLD might be partially explained by rare genetic variants, therefore not identified in the GWAS studies. Moreover, we assumed that loss-of-function variants in ATG7 might confer an increased susceptibility to NAFLD by reducing autophagic catabolism of lipid droplets in the liver. To examine the underlying mechanism of the low-frequency V471A variant and the rare T86I, L127I, Q170E, and P426L variants in ATG7, we performed in vitro experiments of HepaRG cells overexpressing the human V5-tagged ATG7. We observed a reduction in intracellular lipid content in HepaRG cells overexpressing the ATG7 wild type and the 86I mutant protein (p=0.029, n=4) but not the 127I, 170E, 426L, and 471A mutant proteins. Cells with the ATG7 127I, 170E, 426L, and 471A mutants had higher intracellular lipid content compared to cells overexpressing the wild type protein (p=0.029, n=4). Our data suggested that the low-frequency V471A variant and the rare L127I, Q170E, and P426L variants in ATG7 are loss-of-function, resulting in defective lipophagy, reduced hepatocellular lipid droplets turnover, and excessive lipid accumulation. More experiments are needed to clarify the underlying mechanism of the T86I variant. In conclusion, we highlighted a role for ATG7 in reducing hepatocellular lipid content. Furthermore, we provided evidence showing non-synonymous variants in ATG7 increase the risk of NAFLD and that these variants are loss-of-function. We speculate that ATG7 might be a new susceptibility risk genetic locus for liver disease development and progression. References: (1) Eslam et al. J Hepatol. 2018;68(2):268–279. (2) Baselli et al. The Liver Meeting 2018 - AASLD. Hepatology. October 2018. Volume 68, Issue S1. (3) Martinez-Lopez and Singh. Annu Rev Nutr. 2015;35:215–37.


Sign in / Sign up

Export Citation Format

Share Document