scholarly journals Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gongquan Liu ◽  
Yi-Lei Zhao ◽  
Fangyuan He ◽  
Peng Zhang ◽  
Xingyu Ouyang ◽  
...  

AbstractBiodegradation of aromatic and heterocyclic compounds requires an oxidative ring cleavage enzymatic step. Extensive biochemical research has yielded mechanistic insights about catabolism of aromatic substrates; yet much less is known about the reaction mechanisms underlying the cleavage of heterocyclic compounds such as pyridine-ring-containing ones like 2,5-hydroxy-pyridine (DHP). 2,5-Dihydroxypyridine dioxygenase (NicX) from Pseudomonas putida KT2440 uses a mononuclear nonheme Fe(II) to catalyze the oxidative pyridine ring cleavage reaction by transforming DHP into N-formylmaleamic acid (NFM). Herein, we report a crystal structure for the resting form of NicX, as well as a complex structure wherein DHP and NFM are trapped in different subunits. The resting state structure displays an octahedral coordination for Fe(II) with two histidine residues (His265 and His318), a serine residue (Ser302), a carboxylate ligand (Asp320), and two water molecules. DHP does not bind as a ligand to Fe(II), yet its interactions with Leu104 and His105 function to guide and stabilize the substrate to the appropriate position to initiate the reaction. Additionally, combined structural and computational analyses lend support to an apical dioxygen catalytic mechanism. Our study thus deepens understanding of non-heme Fe(II) dioxygenases.

2019 ◽  
Vol 19 (15) ◽  
pp. 1219-1254 ◽  
Author(s):  
Abhinav Prasoon Mishra ◽  
Ankit Bajpai ◽  
Awani Kumar Rai

: Nowadays, heterocyclic compounds act as a scaffold and are the backbone of medicinal chemistry. Among all of the heterocyclic scaffolds, 1,4-Dihydropyridine (1,4-DHP) is one of the most important heterocyclic rings that possess prominent therapeutic effects in a very versatile manner and plays an important role in synthetic, medicinal, and bioorganic chemistry. The main aim of the study is to review and encompass relevant studies related to 1,4-DHP and excellent therapeutic benefits of its derivatives. An extensive review of Pubmed-Medline, Embase and Lancet’s published articles was done to find all relevant studies on the activity of 1,4-DHP and its derivatives. 1,4-DHP is a potent Voltage-Gated Calcium Channel (VGCC) antagonist derivative which acts as an anti-hypertensive, anti- anginal, anti-tumor, anti-inflammatory, anti-tubercular, anti-cancer, anti-hyperplasia, anti-mutagenic, anti-dyslipidemic, and anti-ulcer agent. From the inferences of the study, it can be concluded that the basic nucleus, 1,4-DHP which is a voltage-gated calcium ion channel blocker, acts as a base for its derivatives that possess different important therapeutic effects. There is a need of further research of this basic nucleus as it is a multifunctional moiety, on which addition of different groups can yield a better drug for its other activities such as anti-convulsant, anti-oxidant, anti-mutagenic, and anti-microbial. This review would be significant for further researches in the development of several kinds of drugs by representing successful matrix for the medicinal agents.


IUCrData ◽  
2016 ◽  
Vol 1 (7) ◽  
Author(s):  
Bassam Abu Thaher ◽  
Dieter Schollmeyer ◽  
Stefan Laufer

In the title compound, [Na2(C16H7Cl3N5O2)2(CH3OH)4]·C4H10O·2CH3OH, the central pyrazolo[3,4-d]pyrimidine system makes dihedral angles of 82.98 (7)° with the trichlorophenyl ring and 13.11 (15)° with the pyridine ring. The sodium ion has an octahedral environment, being coordinated by four methanol molecules and one O and one N atom of two different heterocyclic ring systems.


Author(s):  
Qun Wan ◽  
Andrey Y. Kovalevsky ◽  
Mark A. Wilson ◽  
Brad C. Bennett ◽  
Paul Langan ◽  
...  

A crystal ofEscherichia colidihydrofolate reductase (ecDHFR) complexed with folate and NADP+of 4 × 1.3 × 0.7 mm (3.6 mm3) in size was obtained by sequential application of microseeding and macroseeding. A neutron diffraction data set was collected to 2.0 Å resolution using the IMAGINE diffractometer at the High Flux Isotope Reactor within Oak Ridge National Laboratory. A 1.6 Å resolution X-ray data set was also collected from a smaller crystal at room temperature. The neutron and X-ray data were used together for joint refinement of the ecDHFR–folate–NADP+ternary-complex structure in order to examine the protonation state, protein dynamics and solvent structure of the complex, furthering understanding of the catalytic mechanism.


2016 ◽  
Vol 72 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Lina M. Acosta Quintero ◽  
Isidro Burgos ◽  
Alirio Palma ◽  
Justo Cobo ◽  
Christopher Glidewell

A simple and effective two-step approach to tricyclic pyrimidine-fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)-8-chloro-6-methyl-1,2,6,7-tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1-hi]indole, C15H14ClN3, (I), the five-membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)-9-chloro-7-methyl-2,3,7,8-tetrahydro-1H-pyrimido[5′,4′:6,7]azepino[3,2,1-ij]quinoline, C16H16ClN3, (II). However, the seven-membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi-axial site in (I) but a quasi-equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to formC(5) chains and inversion-related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.


1970 ◽  
Vol 9 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Mamun Hossain ◽  
Sakanta Kumar Shaha ◽  
Foysal Aziz ◽  
Rahat Khan ◽  
Md Mahabub Hossain

Nitrogenous heterocyclic compounds, oxindoles especially isatins and related heterocyles have excellent antifungal, anti-inflammatory, antimicrobial and anticancer activities. Oxindoles keto lactams (1-3) were synthesized according to modified Sandmayer method and their N-acetylated compounds (4-6) gave diazo-biphenyls (7-10) through ring cleavage and consequent cyclization reaction. Bis-amide (11), and Schiff-base (12) were synthesized from oxindoles respectively. The investigation of cytotoxicity of the synthesized compounds was carried out against brine shrimp lethality bioassay. In our present investigation some of the synthesized compounds such as halogen substituted acetylisatins (4-6) and the ring extended diazo-biphenyls, (7-10) have been shown to exhibit strong cytotoxic effect. Key words: diazo-biphenyls; oxindoles; cytotoxicity; brine shrimp DOI: 10.3329/dujps.v9i1.7423Dhaka Univ. J. Pharm. Sci. 9(1): 1-6, 2010 (June)


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 772 ◽  
Author(s):  
Márta Palkó ◽  
Mohamed El Haimer ◽  
Zsanett Kormányos ◽  
Ferenc Fülöp

An uncomplicated, high-yielding synthetic route has been developed to constitute complicated heterocycles, applying domino, click and retro-Diels–Alder (RDA) reaction sequences. Starting from 2-aminocarboxamides, a new set of isoindolo[2,1-a]quinazolinones was synthesized with domino ring closure. A click reaction was performed to create the 1,2,3-triazole heterocyclic ring, followed by an RDA reaction resulting in dihydropyrimido[2,1-a]isoindole-2,6-diones. The absolute configuration, concluded by the norbornene structure that served as a chiral source, remained constant throughout the transformations. The structure of the synthesized compounds was examined by 1H and 13C Nuclear Magnetic Resonance (NMR) methods.


Synlett ◽  
2021 ◽  
Author(s):  
Peter Langer

AbstractDomino reactions of heterocyclic enamines with chromone derivatives provides a convenient synthesis of a great variety of annulated heterocyclic ring systems. The course of the reaction depends on the type of substituent located at position 3 of the chromone. Reactions of 3-unsubstituted chromones, 3-nitrochromones, and 3-halochromones proceed by conjugate addition of the carbon atom of the enamine to carbon C-2 of the chromone, ring cleavage, and recyclization via the chromone carbonyl group. In the case of 3-formylchromes, 3-dichloroacetylchromone, 3-perfluoroalkanoylthiochromones, 3-(2-fluorobenzoyl)chromones, and 3-methoxalylchromones the final cyclization proceeds via the carbonyl group located outside the chromone moiety. The functional groups located at the carbonyl group at position 3 of the chromone allow for further synthetic transformations including additional ring closures.Contents1 Introduction2 3-Unsubstituted Chromones3 3-Nitrochromones4 3-Formylchromes5 3-Dichloroacetylchromone6 3-Perfluoroalkanoylthiochromones7 3-Methoxalylchromones8 3-(2-Fluorobenzoyl)chromones9 3-Halochromones10 Chromone-3-carboxylic Acids11 Conclusions


Sign in / Sign up

Export Citation Format

Share Document