scholarly journals Long-term lymphoid progenitors independently sustain naïve T and NK cell production in humans

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco ◽  
Danilo Pellin ◽  
...  

AbstractOur mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2208-2208
Author(s):  
Pamela S Becker ◽  
Jennifer Adair ◽  
Grace Choi ◽  
Anne Lee ◽  
Ann Woolfrey ◽  
...  

Abstract For decades, it has remained challenging to achieve long-term engraftment and correction of blood counts using gene-modified hematopoietic stem cells for Fanconi anemia. Toward this goal, our group conducted preclinical studies using a safety modified lentiviral vector encoding full-length cDNA for FANCA in normal and affected patient hematopoietic progenitor cells, and in a mutant mouse model that supported the IND for a gene therapy clinical trial for Fanconi anemia, complementation group A (NCT01331018). These studies led us to incorporate methods such as addition of N-acetylcysteine and hypoxic incubation during transduction. Because of the low stem cell numbers of Fanconi patients and initial difficulty with using plerixafor off-label for mobilization, we began our study with bone marrow as the source of stem cells. Due to concerns regarding secondary cancers, no conditioning was administered prior to infusion of gene-modified cells. The US Food and Drug Administration approved adult patients initially, but later permitted pediatric patient enrollment with a minimum age of 4 years. The primary objective of our phase I trial was safety. Secondary objectives included in vitro correction of mitomycin C (MMC) sensitivity, procurement of sufficient cell numbers, and ultimately, long-term correction of blood counts in recipients. Eligibility included absolute neutrophil count ≥0.5, hemoglobin ≥8, platelet count ≥20,000, lack of matched family donor, adequate organ function, and not meeting criteria for diagnosis of MDS. Our three enrolled patients were ages 22, 10, and 5 years. All demonstrated defects in the FANCA gene, with two patients sequenced and one patient diagnosed by complementation. Due to in-process learning and the later addition of plerixafor mobilization to the protocol, three different laboratory procedures were used to prepare the gene-modified product for each patient. Cell products were CD34+ selected bone marrow, bone marrow mononuclear cells depleted of red cells by hetastarch, and G-CSF and plerixafor mobilized cells depleted of red blood cells and cells bearing lineage markers, respectively. Transduction efficiencies were 17.7, 42.7 and 26.3% of colony forming cells (CFC) in 0 nM MMC, and 80, 100, and 100% of CFC in 10 nM MMC. Growth of hematopoietic colonies in MMC indicated functional correction of the FANCA defect. The 1st patient received 6.1×10e4, the 2nd 2.9×10e5, and the 3rd 4.3×10e6 CD34+ cells/kg. Serious adverse events included cytopenias in all patients, and hospital admission for fever due to viral upper respiratory infection in one patient. The patients remain alive at 46, 38, and 12 months after receipt of gene-modified cells. Due to worsening cytopenias, the third patient underwent hematopoietic cell transplant from an unrelated donor 10 months after infusion of gene-modified cells. To date, he has done well with transplant, and no indication that prior gene therapy impacted the outcome. The blood counts for the first 2 patients who have not undergone allogeneic transplant remain stable at 1,111 and 1,077 days post infusion compared to the first blood counts when they arrived at our center. For the 1st patient, vector was detectable in white blood cells (WBC) up to 21 days, in the 2nd up to 582 days, and the 3rd up to 81 days post infusion. Thus, in these patients, despite dramatic improvement in cell dose during the study, there was lack of persistence in detection of gene-modified WBCs beyond 1.5 years. A number of factors may have contributed, including lack of conditioning, in vitro cell manipulation including cytokine exposure, inability to transduce primitive hematopoietic stem cells, and paucity of long-term repopulating cells at the ages of the patients, suggesting earlier collection may be beneficial. This study is now closed to enrollment. Valuable information gained as a result of this study will contribute to future clinical gene therapy trials. Current work focuses on how to evaluate stem cell fitness prior to attempting gene therapy, minimizing manipulation required for gene correction and/or in vivo genetic correction and non-chemotherapy-based conditioning to facilitate engraftment. We would like to personally thank each patient and their families for participating in this study, as we could not have learned these lessons without their support. Disclosures Becker: GlycoMimetics: Research Funding; Abbvie: Research Funding; Amgen: Research Funding; BMS: Research Funding; CVS Caremark: Consultancy; Trovagene: Research Funding; Rocket Pharmaceuticals: Research Funding; Novartis: Research Funding; Pfizer: Consultancy; JW Pharmaceuticals: Research Funding. Adair:Miltenyi Biotec: Honoraria; RX Partners: Honoraria; Rocket Pharmaceuticals: Patents & Royalties: PCT/US2017/037967 and PCT/US2018/029983. Kiem:Rocket Pharmaceuticals: Consultancy; Homology Medicine: Consultancy; Magenta: Consultancy.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1489-1496 ◽  
Author(s):  
F Vecchini ◽  
KD Patrene ◽  
SS Boggs

Abstract Mouse bone marrow (BM) was separated into low-density, lineage- negative, wheat germ agglutinin-positive (WGA+), Rhodamine-123 bright (Rhbright) or dim (Rhdim) cells to obtain populations that were highly enriched for committed progenitors (Rhbright cells) or for more primitive stem cells (Rhdim). When 2,500 Rhbright or Rhdim cells were seeded onto 6-week-old irradiated (20 Gy) long-term BM cultures (LTBMC), the nonadherent cell production from Rhbright cells was transient and ended after 5 weeks. Production from Rhdim cells did not begin until week 3, peaked at week 5, and ended at week 8, when the irradiated stroma seemed to fail. Termination of cell production from Rhdim cells did not occur in nonirradiated LTBMC from W41/Wv mice. During peak nonadherent cell production, 25% to 30% of the cells in the nonirradiated LTBMC from W41/Wv mice had donor cell markers. Two approaches were tested to try to enhance the proportion or number of donor cells. Addition of Origen-HGF at the time of seeding Rhdim cells caused a nonspecific increase in both host and donor cell production, but a specific increase in production of donor cells was obtained by seeding the cultures at 2 weeks rather than 6 weeks. Limiting dilution of Rhdim cells gave the same frequency of wells producing cells on both irradiated +/+ and nonirradiated W41/Wv or W/Wv cultures.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1184-1184
Author(s):  
Hitoshi Minamiguchi ◽  
Anne G. Livingston ◽  
John R. Wingard ◽  
Leonard D. Shultz ◽  
Makio Ogawa

Abstract NOD-scid mice have been widely used as recipients in the xenograft assay for human hematopoietic stem cells (HSCs). One major problem with the strain is the low level of engraftment except when large numbers of cells are injected. This is probably caused by the presence of residual natural killer (NK) cell cytotoxic activity. NOD-scid/beta 2 microglobulin (B2m)null mice have been reported to have reduced NK cell cytotoxic activity and support higher levels of human cell engraftment. However, use of this strain of mice is limited by their difficulty in breeding and short life span caused by early development of lymphomas, which is accelerated by irradiation. Another immune-incompetent mouse model, NOD-recombination activating gene (Rag1)null mice allow longer observation of human cell engraftment than NOD-scid mice and are easier to breed. Genetic crossing of perforin (Prf) structure gene-targeted mutation onto NOD-Rag1null strain results in absence of NK cell cytotoxic function. In these mice, NK cells are not capable of killing target cells because of the absence of Prf, the major mediator of cytotoxic activity. We have tested the use of NOD-Rag1nullPrf1null mice as recipients of long-term xenograft assay for human HSCs by adopting Yoder’s method of conditioning newborn mice with minor modifications. Pregnant NOD-Rag1nullPrf1null dams were treated with 22.5mg/kg busulfan in 20% dimethylsulfoxide in Hank’s BSS on day 17.5 and 18.5 pc via subcutaneous injection. On the day of delivery, mononuclear cells (MNCs) were isolated from human cord blood (n=3) by density gradient centrifugation and T cell-depleted MNCs were separated by using mouse anti-human CD3, CD4, and CD8 antibodies and sheep anti-mouse IgG immunomagnetic beads to prevent preferential T cell engraftment. The busulfan-exposed pups were transplanted with 4–5 million T cell-depleted MNCs via the facial vein. At 6 months post-transplantation, human cells were detected in the bone marrow of 4 out of 10 transplanted mice. The levels of human CD45+ cells in the bone marrow of engrafted mice were 79.9, 69.8, 60.5, and 7.4%, and those in the peripheral blood were 6.3, 5.8, 4.1, and 1.3%. Multilineage engraftment was confirmed by phenotypic analysis. Next, we tested the hypothesis that human cord blood HSCs have dye efflux activity by injecting T cell-depleted Rhodamine 123 (Rho)− or + cells into conditioned newborn NOD-Rag1nullPrf1null mice. Six-month engraftment was found only with the Rho− cells. Thus, conditioned newborn NOD-Rag1nullPrf1null mice provide an excellent model for assaying long-term engrafting human HSCs.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4715-4715
Author(s):  
Mengqun Tan ◽  
Zhenqing Liu ◽  
Juan Zhang ◽  
Zhiyan Li ◽  
Liujiang Song ◽  
...  

Abstract Abstract 4715 β -Thalassemia is one of the most common worldwide monogenic human diseases,caused by molecular defects in the human β -globin gene cluster leading to decrease or absence of β-globin. Loss of β -globin chains causes ineffective production of oxygen-carrying hemoglobin and therefore results in severe anemia. The treatment for β -Thalassemia major usually includes lifelong blood transfusions but chronic blood transfusion often causes iron overload, and accumulated iron produces tissue damage in multiple organs, so that iron chelating treatment is also needed. Bone marrow transplantation is another effective therapy, which can eliminate a patient's dependence on blood transfusions, however, it is difficult to find a matching donor for most patients; therefore it is only available for a minority of patients. Gene therapy is one potential novel therapy for treatment of inherited monogenic disorders. The long–term therapeutic strategy for this disease is to replace the defective β-globin gene via introduction of a functional gene into hematopoietic stem cells (HSCs). Adeno-associated virus type 2 (AAV), a nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. AAV can infect both dividing and non-dividing cells and wild AAV integrates preferentially at a specific site on human chromosome 19. In the absence of helper virus, recombinant AAV will stably integrate into the host cell genome, mediating long-term and stable expression of the transgene. In this study, we used a hybrid rAAV6/2 vector carrying the human β-globin gene to transduce HSCs from a β -Thalassemia patient, followed by transplantation into irradiated BALB/c nude mice. One month post-transplantation, Hb was prepared from peripheral blood and analyzed by Western Blot and HPLC respectively. RNA and DNA were isolated from bone marrow cells (BMCs) from recipient mice transplanted with mock-infected or hybrid rAAV–globin-infected cells and analyzed by RT-PCR and PCR respectively. The results showed: 1. Human β-actin and β-globin transcripts were detected by RT-PCR in BMCs from all recipient mice, indicating that human HSCs were successfully transplanted in these mice and that the human β-globin gene was transcriptionally active in the donor cells. 2. The level of human hemoglobin expressed in peripheral red blood cells of recipient mice as measured by HPLC (ratio of β/α) was increased to 0.3 from 0.05 of pre-transplantation levels. Expression of human β-globin was also confirmed in recipient mice by Western Blot; a 2–3-fold increase compared with that of controls. Our results indicate that human HSCs from a β-Thalassemia patient can be efficiently transduced by a hybrid rAAV6/2-β-globin vector followed by expression of normal human β-globin protein. This study provides a proof-of-concept that rAAV6/2-mediated gene transfer into human HSCs might be a potential approach for gene therapy of β-Thalassemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1993 ◽  
Vol 81 (6) ◽  
pp. 1489-1496
Author(s):  
F Vecchini ◽  
KD Patrene ◽  
SS Boggs

Mouse bone marrow (BM) was separated into low-density, lineage- negative, wheat germ agglutinin-positive (WGA+), Rhodamine-123 bright (Rhbright) or dim (Rhdim) cells to obtain populations that were highly enriched for committed progenitors (Rhbright cells) or for more primitive stem cells (Rhdim). When 2,500 Rhbright or Rhdim cells were seeded onto 6-week-old irradiated (20 Gy) long-term BM cultures (LTBMC), the nonadherent cell production from Rhbright cells was transient and ended after 5 weeks. Production from Rhdim cells did not begin until week 3, peaked at week 5, and ended at week 8, when the irradiated stroma seemed to fail. Termination of cell production from Rhdim cells did not occur in nonirradiated LTBMC from W41/Wv mice. During peak nonadherent cell production, 25% to 30% of the cells in the nonirradiated LTBMC from W41/Wv mice had donor cell markers. Two approaches were tested to try to enhance the proportion or number of donor cells. Addition of Origen-HGF at the time of seeding Rhdim cells caused a nonspecific increase in both host and donor cell production, but a specific increase in production of donor cells was obtained by seeding the cultures at 2 weeks rather than 6 weeks. Limiting dilution of Rhdim cells gave the same frequency of wells producing cells on both irradiated +/+ and nonirradiated W41/Wv or W/Wv cultures.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 894-901 ◽  
Author(s):  
Christopher A. Klug ◽  
Samuel Cheshier ◽  
Irving L. Weissman

Abstract Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3271-3271
Author(s):  
Claudia R. Ball ◽  
Manfred Schmidt ◽  
Ingo H. Pilz ◽  
Fessler Sylvia ◽  
David A. Williams ◽  
...  

Abstract Gene therapy is a promising approach for the therapy of hereditary diseases, but after the occurrence of adverse side effects in a SCID-X1 gene therapy trial increased biological safety has become a major goal of gene therapy. A reduction of the number of transplanted cells could help achieve this goal by reducing the statistical likelihood of insertional mutagenesis simply by simply reducing the number of transplanted cells carrying potentially untoward insertion sites. As we have previously shown, incorporation of the selectable marker gene MGMT P140K into a retroviral vector allows a reduced intensity and toxicity in vivo selection of low numbers of genetically modified hematopoietic cells by chemotherapy with O6-benzylguanine (O6BG) and nitrosourea drugs such as 1,3-bis-2 chloroethyl-1-nitrosourea (BCNU). However, it is still not known whether extended selection over longer periods of time influences the long-term proliferation and differentiation capacity of murine haematopoietic stem cells. To address this question, serial transplantations of murine MGMT-P140K-expressing hematopoiesis combined with repeated administrations of O6-BG and BCNU were performed. After ex vivo gene transfer of a MGMT/IRES/eGFP-encoding retroviral vector, bone marrow cells were transplanted into syngeneic C57 BL/6J mice and serially transplanted. First, 2nd and 3rd generation recipient mice were subsequently treated every four weeks in order to amplify treatment effects on the long-term clonal behaviour of modified hematopoietic stem cells. Lineage contribution of transduced hematopoiesis was monitored by FACS over a total of 17 rounds of selection and clonality was monitored by LAM-PCR over a total of 16 rounds of selection. In primary mice, the percentage of transduced blood cells increased from 4.7 ± 0.8 % to 36.4 ± 9.8 % (n=12) and in secondary mice from 29.9 ± 7.2 % to 65.1 ± 8.7 % (n=18) after selection without inducing persistent peripheral blood cytopenia. Lineage analysis showed an unchanged multilineage differentiation potential in the transduced compared to control cells in 1st and 2nd generation animals. LAM PCR analysis of peripheral blood revealed stable oligo- to polyclonal hematopoiesis in 1st, 2nd and 3rd generation mice. Evidence of predominant clones or clonal exhaustion was not observed despite of up to 16 rounds of BCNU/O6-BG treatment. Interestingly, pairs of secondary transplanted mice which had received bone marrow cells from identical donors showed very similar clonal composition, engraftment kinetics under selection and lineage contribution of the transduced hematopoiesis. This is molecular proof that extensive self-renewal of transplantable stem cells had occurred in the primary mice resulting in a net symmetric refilling of the stem cell compartment. In summary, we demonstrate that even extended selection of MGMT-P140K-expressing hematopoietic stem cells by repetitive chemotherapy does not affect differentiation or proliferation potential and does not result in clonal exhaustion. Our results have important implications for the clinical use of MGMT selection strategies intending to employ amplification of a limited number of genetically modified clones in clinical gene therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 819-819
Author(s):  
Olga S. Kustikova ◽  
Bernhard Schiedlmeier ◽  
Martijn H. Brugman ◽  
Maike Stahlhut ◽  
Zhixiong Li ◽  
...  

Abstract The development of clonal imbalance after transplantation of genetically modified hematopoietic cells is a cause of concern in the long-term follow-up of patients undergoing gene therapy for the treatment of severe or acquired hematopoietic disorders. We and others have previously described how insertional proto-oncogene dysregulation by transgene integration may provoke clonal restriction and leukemia, thus becoming a dose-limiting toxicity of gene therapy. When targeting populations enriched for or depleted from hematopoietic stem cells (HSC) in the C57Bl6 CD45 chimerism model, we found that intrinsic stem cell potential is a conditio sine qua non for the establishment of expanding insertional mutants. Mice observed for 6–7 months after co-transplantation of gene-modified cells and non-transduced fresh competitor cells were monitored in regular intervals of 6 weeks and the emergence of dominant clones was assessed by flow cytometry in combination with an LM-PCR procedure validated on mixtures of polyclonal and oligoclonal DNA. Dominant clones originating after gammaretroviral insertion in the Evi1 locus reproducibly occurred with a frequency of 1:10,000 when targeting multipotent LSK cells or short-term repopulating HSC (LSK CD34+ CD135−), but no such events were detected in the progeny of >1 million Sca1- Lin- c-Kit+ (LK) cells or ~75,000 multipotent progenitor cells (MPP, LSK CD34+ CD135+). Dominant clones originating from multipotent cells and displaying insertional upregulation of Evi1 showed greatly diminished T lymphopoiesis in vivo, formally demonstrating transforming events. Residual progeny of MPP or LK cells was detected in transplanted animals with insertional events in proto-oncogenes, but these clones were unable to expand to significant levels of hematopoiesis (>1%). Targeting HSC-enriched cell populations (LSK CD34+ CD135− or LSK CD34− CD135−), a comparison of gamma-retroviral transduction conditions in a 5 days serum-free culture period and lentiviral transduction in a 20h protocol revealed that the latter conditions significantly improved chimerism with a greatly increased clonal diversity in the first 8 weeks of repopulation. However, after lentiviral transduction clonal dominance progressively developed over an observation time of 6 months, although there was no evidence for insertional proto-oncogene upregulation as the underlying cause even when using a lentiviral vector with a strong internal enhancer-promoter capable of insertional long-distance effects. Our study suggests two important conclusions: (1) Insertional mutagenesis in gene therapy is unlikely to endow differentiating progenitor cells with (leukemogenic) stem cell potential and (2) clonal restriction developing in the long-term follow-up after transplantation of gene-modified hematopoietic stem cells is not necessarily a side effect of insertional mutagenesis, but may also reflect classical “gene marking” of a stem cell clone with a strong intrinsic potential for competitive dominance.


Blood ◽  
2004 ◽  
Vol 104 (3) ◽  
pp. 873-880 ◽  
Author(s):  
Yiming Huang ◽  
Francine Rezzoug ◽  
Paula M. Chilton ◽  
H. Leighton Grimes ◽  
Daniel E. Cramer ◽  
...  

AbstractThe events that regulate engraftment and long-term repopulating ability of hematopoietic stem cells (HSCs) after transplantation are not well defined. We report for the first time that major histocompatibility complex (MHC) class I K plays a critical role in HSC engraftment via interaction with recipient natural killer (NK) cells. Durable engraftment of purified HSCs requires MHC class I K matching between HSC donor and recipient. In the absence of MHC class I K matching, HSCs exhibit impaired long-term engraftment (P = .01). Dependence on MHC class I K matching is eliminated in B6 beige mice that lack NK cell function, as well as in wild-type mice depleted of NK cells, implicating a possible regulatory role of NK cells for HSC engraftment. The coadministration of CD8+/T-cell receptor–negative (TCR-) graft facilitating cells (FCs) matched at MHC class I K to the HSC donor overcomes the requirement for MHC class I K matching between HSCs and recipient. These data demonstrate that FCs inhibit NK cell effects on the HSCs. Notably, FCs do not suppress the cytotoxic activity of activated NK cells. Enhanced green fluorescent protein–positive (EGFP+) FCs persist for one month following allogeneic transplantation, making cold target inhibition an unlikely mechanism. Therefore, MHC class I may play a critical role in the initiating events that dictate HSC engraftment and/or NK-mediated rejection following allogeneic transplantation.


Sign in / Sign up

Export Citation Format

Share Document