scholarly journals The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Bi ◽  
Loredana Scalschi ◽  
Namrata Jaiswal ◽  
Tesfaye Mengiste ◽  
Renana Fried ◽  
...  

AbstractCrh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.

2020 ◽  
Author(s):  
Kai Bi ◽  
Loredana Scalschi ◽  
Gupta Namrata Jaiswal ◽  
Renana Frid ◽  
Wenjun Zhu ◽  
...  

AbstractCrh proteins catalyze crosslinking of chitin and glucan polymers in the fugal cell wall. We revealed a novel and unexpected role of Botrytis cinerea BcCrh1 as a cytoplasmic effector and elicitor of plant defense. During saprophytic growth the BcCrh1 protein is localized in vacuoles and ER. Upon plant infection the protein accumulates to high levels in infection cushions, it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids were found sufficient for protein uptake and cell death induction, respectively. Dimerization of BcCrh proteins was necessary for the transglycosylation activity and proper fungal development, while the monomeric proteins was sufficient for induction of cell death. Arabidopsis lines expressing the bccrh1 gene had reduced sensitivity to B. cinerea, demonstrating the potential use of the protein in plant immunization against necrotrophic pathogens.


2011 ◽  
Vol 7 (8) ◽  
pp. e1002185 ◽  
Author(s):  
Neta Shlezinger ◽  
Anna Minz ◽  
Yonatan Gur ◽  
Ido Hatam ◽  
Yasin F. Dagdas ◽  
...  

Planta ◽  
2012 ◽  
Vol 236 (4) ◽  
pp. 1191-1204 ◽  
Author(s):  
In Sun Hwang ◽  
Nak Hyun Kim ◽  
Du Seok Choi ◽  
Byung Kook Hwang

2000 ◽  
Vol 13 (7) ◽  
pp. 724-732 ◽  
Author(s):  
Li Zheng ◽  
Mathew Campbell ◽  
Jennifer Murphy ◽  
Stephen Lam ◽  
Jin-Rong Xu

In Magnaporthe grisea, a well-conserved mitogen-activated protein (MAP) kinase gene, PMK1, is essential for fungal pathogenesis. In this study, we tested whether the same MAP kinase is essential for plant infection in the gray mold fungus Botrytis cinerea, a necrotrophic pathogen that employs infection mechanisms different from those of M. grisea. We used a polymerase chain reaction-based approach to isolate MAP kinase homologues from B. cinerea. The Botrytis MAP kinase required for pathogenesis (BMP) MAP kinase gene is highly homologous to the M. grisea PMK1. BMP1 is a single-copy gene. bmp1 gene replacement mutants produced normal conidia and mycelia but were reduced in growth rate on nutrient-rich medium. bmp1 mutants were nonpathogenic on carnation flowers and tomato leaves. Re-introduction of the wild-type BMP1 allele into the bmp1 mutant restored both normal growth rate and pathogenicity. Further studies indicated that conidia from bmp1 mutants germinated on plant surfaces but failed to penetrate and macerate plant tissues. bmp1 mutants also appeared to be defective in infecting through wounds. These results indicated that BMP1 is essential for plant infection in B. cinerea, and this MAP kinase pathway may be widely conserved in pathogenic fungi for regulating infection processes.


2021 ◽  
Author(s):  
Thomas Leisen ◽  
Janina Werner ◽  
Patrick Pattar ◽  
Edita Ymeri ◽  
Frederik Sommer ◽  
...  

Botrytis cinerea is a major pathogen of more than 1400 plant species. During infection, the kills host cells during infection and spreads through necrotic tissue, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas protocol was established which allowed serial marker-free mutagenesis to generate Botrytis mutants lacking up to 12 different CDIPs. Infection analysis revealed a decrease in virulence with increasing numbers of knockouts, and differences in the effects of knockouts on different host plants. The on planta secretomes obtained from these mutants revealed substantial remaining necrotic activity after infiltration into leaves. Our study has addressed for the first time the functional redundancy of virulence factors of a fungal pathogen, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins and metabolites to achieve necrotrophic infection of a wide variety of host plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Beibei Li ◽  
Ruolin Wang ◽  
Shiya Wang ◽  
Jiang Zhang ◽  
Ling Chang

Cytokinins (CKs) can modulate plant immunity to various pathogens, but how CKs are involved in plant defense responses to the necrotrophic pathogen Botrytis cinerea is still unknown. Here, we found that B. cinerea infection induced transcriptional changes in multiple genes involved in the biosynthesis, degradation, and signaling of CKs, as well as their contents, in pathogen-infected Arabidopsis leaves. Among the CKs, the gene expression of CYTOKININ OXIDASE/DEHYDROGENASE 5 (CKX5) was remarkably induced in the local infected leaves and the distant leaves of the same plant without pathogen inoculation. Cis-zeatin (cZ) and its riboside (cZR) accumulated considerably in infected leaves, suggesting an important role of the cis-zeatin type of CKs in the plant response to B. cinerea. Cytokinin double-receptor mutants were more susceptible to B. cinerea infection, whereas an exogenous CK treatment enhanced the expression levels of defense-related genes and of jasmonic acid (JA) and ethylene (ET), but not salicylic acid (SA), resulting in higher resistance of Arabidopsis to B. cinerea. Investigation of CK responses to B. cinerea infection in the JA biosynthesis mutant, jar1-1, and ET-insensitive mutant, ein2-1, showed that CK signaling and levels of CKs, namely, those of isopentenyladenine (iP), isopentenyladenine riboside (iPR), and trans-zeatin (tZ), were enhanced in jar1-1-infected leaves. By contrast, reductions in iP, iPR, tZ, and tZ riboside (tZR) as well as cZR contents occurred in ein2-1-infected leaves, whose transcript levels of CK signaling genes were likewise differentially regulated. The Arabidopsis Response Regulator 5 (ARR5) gene was upregulated in infected leaves of ein2-1 whereas another type-A response regulator, ARR16, was significantly downregulated, suggesting the existence of a complex regulation of CK signaling via the ET pathway. Accumulation of the cis-zeatin type of CKs in B. cinerea-infected leaves depended on ET but not JA pathways. Collectively, our findings provide evidence that CK responds to B. cinerea infection in a variety of ways that are differently modulated by JA and ET pathways in Arabidopsis.


Toxins ◽  
2014 ◽  
Vol 6 (2) ◽  
pp. 679-692 ◽  
Author(s):  
Khairul Ansari ◽  
Siamsa Doyle ◽  
Joanna Kacprzyk ◽  
Mojibur Khan ◽  
Stephanie Walter ◽  
...  

2015 ◽  
Vol 28 (10) ◽  
pp. 1117-1129 ◽  
Author(s):  
Charlotte Gruau ◽  
Patricia Trotel-Aziz ◽  
Sandra Villaume ◽  
Fanja Rabenoelina ◽  
Christophe Clément ◽  
...  

Although induced systemic resistance (ISR) is well-documented in the context of plant–beneficial bacteria interactions, knowledge about the local and systemic molecular and biochemical defense responses before or upon pathogen infection in grapevine is very scarce. In this study, we first investigated the capacity of grapevine plants to express immune responses at both above- and below-ground levels upon interaction with a beneficial bacterium, Pseudomonas fluorescens PTA-CT2. We then explored whether the extent of priming state could contribute to the PTA-CT2-induced ISR in Botrytis cinerea–infected leaves. Our data provide evidence that this bacterium colonized grapevine roots but not the above-ground plant parts and altered the plant phenotype that displayed multiple defense responses both locally and systemically. The grapevine roots and leaves exhibited distinct patterns of defense-related gene expression during root colonization by PTA-CT2. Roots responded faster than leaves and some responses were more strongly upregulated in roots than in leaves and vice versa for other genes. These responses appear to be associated with some induction of cell death in roots and a transient expression of HSR, a hypersensitive response-related gene in both local (roots) and systemic (leaves) tissues. However, stilbenic phytoalexin patterns followed opposite trends in roots compared with leaves but no phytoalexin was exuded during plant-bacterium interaction, suggesting that roots could play an important role in the transfer of metabolites contributing to immune response at the systemic level. Unexpectedly, in B. cinerea–infected leaves PTA-CT2-mediated ISR was accompanied in large part by a downregulation of different defense-related genes, including HSR. Only phytoalexins and glutathion-S-transferase 1 transcripts were upregulated, while the expression of anthocyanin biosynthetic genes was maintained at a higher level than the control. This suggests that decreased expression of HSR, as a marker of cell death, and activation of secondary metabolism pathways could be responsible for a reduced B. cinerea colonization capacity in bacterized plants.


Sign in / Sign up

Export Citation Format

Share Document