scholarly journals The BMP1 Gene Is Essential for Pathogenicity in the Gray Mold Fungus Botrytis cinerea

2000 ◽  
Vol 13 (7) ◽  
pp. 724-732 ◽  
Author(s):  
Li Zheng ◽  
Mathew Campbell ◽  
Jennifer Murphy ◽  
Stephen Lam ◽  
Jin-Rong Xu

In Magnaporthe grisea, a well-conserved mitogen-activated protein (MAP) kinase gene, PMK1, is essential for fungal pathogenesis. In this study, we tested whether the same MAP kinase is essential for plant infection in the gray mold fungus Botrytis cinerea, a necrotrophic pathogen that employs infection mechanisms different from those of M. grisea. We used a polymerase chain reaction-based approach to isolate MAP kinase homologues from B. cinerea. The Botrytis MAP kinase required for pathogenesis (BMP) MAP kinase gene is highly homologous to the M. grisea PMK1. BMP1 is a single-copy gene. bmp1 gene replacement mutants produced normal conidia and mycelia but were reduced in growth rate on nutrient-rich medium. bmp1 mutants were nonpathogenic on carnation flowers and tomato leaves. Re-introduction of the wild-type BMP1 allele into the bmp1 mutant restored both normal growth rate and pathogenicity. Further studies indicated that conidia from bmp1 mutants germinated on plant surfaces but failed to penetrate and macerate plant tissues. bmp1 mutants also appeared to be defective in infecting through wounds. These results indicated that BMP1 is essential for plant infection in B. cinerea, and this MAP kinase pathway may be widely conserved in pathogenic fungi for regulating infection processes.

2001 ◽  
Vol 14 (11) ◽  
pp. 1293-1302 ◽  
Author(s):  
Christian Schulze Gronover ◽  
Daniela Kasulke ◽  
Paul Tudzynski ◽  
Bettina Tudzynski

To identify signal transduction pathways of the gray mold fungus Botrytis cinerea involved in host infection, we used heterologous hybridization and a polymerase chain reaction (PCR)-based approach to isolate two genes (bcg1 and bcg2) encoding α subunits of heterotrimeric GTP-binding proteins. Both genes have homologues in other fungi: bcg1 is a member of the Gαi class, whereas bcg2 has similarities to the magC gene of Magnaporthe grisea and the gna-2 gene of Neurospora crassa. Reverse-transcription (RT)-PCR experiments showed clearly that both genes are expressed at very early stages in infected bean leaves. Gene replacement experiments were performed for both genes. bcg1 null mutants differ in colony morphology from the wild-type strain, do not secrete extracellular proteases, and show clearly reduced pathogenicity on bean and tomato. Conidia germination and penetration of plant tissue is not disturbed in bcg1 mutants, but the infection process stops after formation of primary lesions. In contrast, bcg2 mutants show wild-type colony morphology in axenic culture and are only slightly reduced in pathogenicity. Complementation of bcg1 mutants with the wild-type gene copy led to the full recovery of colony morphology, protease secretion, and pathogenicity on both host plants. Application of exogenous cyclic AMP restored the wild-type growth pattern of bcg1 mutants, but not the protease secretion, implicating an essential role of BCG1 in different signaling pathways.


2004 ◽  
Vol 17 (5) ◽  
pp. 547-556 ◽  
Author(s):  
Lei Li ◽  
Chaoyang Xue ◽  
Kenneth Bruno ◽  
Marie Nishimura ◽  
Jin-Rong Xu

In the rice blast fungus Magnaporthe grisea, the Pmk1 mitogen-activated protein (MAP) kinase is essential for appressorium formation and infectious growth. PMK1 is homologous to yeast Fus3 and Kss1 MAP kinases that are known to be regulated by the Ste20 PAK kinase for activating the pheromone response and filamentation pathways. In this study, we isolated and characterized two PAK genes, CHM1 and MST20, in M. grisea. Mutants disrupted in MST20 were reduced in aerial hyphae growth and conidiation, but normal in growth rate, appressorium formation, penetration, and plant infection. In chm1 deletion mutants, growth, conidiation, and appressorium formation were reduced significantly. Even though appressoria formed by chm1 mutants were defective in penetration, chm1 mutants were able to grow invasively on rice leaves and colonize through wounds. The chm1 mutants were altered in conidiogenesis and produced conidia with abnormal morphology. Hyphae of chm1 mutants had normal septation, but the length of hyphal compartments was reduced. On nutritionally poor oatmeal agar, chm1 mutants were unstable and produced sectors that differed from original chm1 mutants in growth rate, conidiation, or colony morphology. However, none of the monoconidial cultures derived from these spontaneous sectors were normal in appressorial penetration and fungal pathogenesis. These data suggest that MST20 is dispensable for plant infection in M. grisea, but CHM1 plays a critical role in appressorium formation and penetration. Both mst20 and chm1 deletion mutants were phenotypically different from the pmk1 mutant that is defective in appressorium formation and infectious hyphae growth. It is likely that MST20 and CHM1 individually play no critical role in activating the PMK1 MAP kinase pathway during appressorium formation and infectious hyphae growth. However, CHM1 appears to be essential for appressorial penetration and CHM1 and MST20 may have redundant functions in M. grisea.


2021 ◽  
Vol 22 (4) ◽  
pp. 1694
Author(s):  
Jiao Sun ◽  
Chen-Hao Sun ◽  
Hao-Wu Chang ◽  
Song Yang ◽  
Yue Liu ◽  
...  

Cyclophilin (Cyp) and Ca2+/calcineurin proteins are cellular components related to fungal morphogenesis and virulence; however, their roles in mediating the pathogenesis of Botrytis cinerea, the causative agent of gray mold on over 1000 plant species, remain largely unexplored. Here, we show that disruption of cyclophilin gene BcCYP2 did not impair the pathogen mycelial growth, osmotic and oxidative stress adaptation as well as cell wall integrity, but delayed conidial germination and germling development, altered conidial and sclerotial morphology, reduced infection cushion (IC) formation, sclerotial production and virulence. Exogenous cyclic adenosine monophosphate (cAMP) rescued the deficiency of IC formation of the ∆Bccyp2 mutants, and exogenous cyclosporine A (CsA), an inhibitor targeting cyclophilins, altered hyphal morphology and prevented host-cell penetration in the BcCYP2 harboring strains. Moreover, calcineurin-dependent (CND) genes are differentially expressed in strains losing BcCYP2 in the presence of CsA, suggesting that BcCyp2 functions in the upstream of cAMP- and Ca2+/calcineurin-dependent signaling pathways. Interestingly, during IC formation, expression of BcCYP2 is downregulated in a mutant losing BcJAR1, a gene encoding histone 3 lysine 4 (H3K4) demethylase that regulates fungal development and pathogenesis, in B. cinerea, implying that BcCyp2 functions under the control of BcJar1. Collectively, our findings provide new insights into cyclophilins mediating the pathogenesis of B. cinerea and potential targets for drug intervention for fungal diseases.


2021 ◽  
pp. 126731
Author(s):  
Md Kamaruzzaman ◽  
Ze Wang ◽  
Mingde Wu ◽  
Long Yang ◽  
Yongchao Han ◽  
...  

2015 ◽  
Vol 28 (11) ◽  
pp. 1167-1180 ◽  
Author(s):  
Jani Kelloniemi ◽  
Sophie Trouvelot ◽  
Marie-Claire Héloir ◽  
Adeline Simon ◽  
Bérengère Dalmais ◽  
...  

Mature grapevine berries at the harvesting stage (MB) are very susceptible to the gray mold fungus Botrytis cinerea, while veraison berries (VB) are not. We conducted simultaneous microscopic and transcriptomic analyses of the pathogen and the host to investigate the infection process developed by B. cinerea on MB versus VB, and the plant defense mechanisms deployed to stop the fungus spreading. On the pathogen side, our genome-wide transcriptomic data revealed that B. cinerea genes upregulated during infection of MB are enriched in functional categories related to necrotrophy, such as degradation of the plant cell wall, proteolysis, membrane transport, reactive oxygen species (ROS) generation, and detoxification. Quantitative-polymerase chain reaction on a set of representative genes related to virulence and microscopic observations further demonstrated that the infection is also initiated on VB but is stopped at the penetration stage. On the plant side, genome-wide transcriptomic analysis and metabolic data revealed a defense pathway switch during berry ripening. In response to B. cinerea inoculation, VB activated a burst of ROS, the salicylate-dependent defense pathway, the synthesis of the resveratrol phytoalexin, and cell-wall strengthening. On the contrary, in infected MB, the jasmonate-dependent pathway was activated, which did not stop the fungal necrotrophic process.


2012 ◽  
Vol 25 (4) ◽  
pp. 481-495 ◽  
Author(s):  
S. Giesbert ◽  
J. Schumacher ◽  
V. Kupas ◽  
J. Espino ◽  
N. Segmüller ◽  
...  

Agrobacterium tumefaciens–mediated transformation (ATMT) was used to generate an insertional mutant library of the gray mold fungus Botrytis cinerea. From a total of 2,367 transformants, 68 mutants showing significant reduction in virulence on tomato and bean plants were analyzed in detail. As reported for other fungal ATMT libraries, integrations were mostly single copy, occurred preferentially in noncoding (regulatory) regions, and were frequently accompanied by small deletions of the target sequences and loss of parts of the border sequence. Two T-DNA integration events that were found to be linked to virulence were characterized in more detail: a catalytic subunit of a PP2A serine/threonine protein phosphatase (BcPP2Ac) and the SPT3 subunit of a Spt-Ada-Gcn5-acetyltransferase (SAGA-like) transcriptional regulator complex. Gene replacement and silencing approaches revealed that both Bcpp2Ac and SPT3 are crucial for virulence, growth, and differentiation as well as for resistance to H2O2 in B. cinerea.


2002 ◽  
Vol 15 (11) ◽  
pp. 1119-1127 ◽  
Author(s):  
Zhanming Hou ◽  
Chaoyang Xue ◽  
Youliang Peng ◽  
Talma Katan ◽  
H. Corby Kistler ◽  
...  

Fusarium graminearum is an important pathogen of small grains and maize in many areas of the world. Infected grains are often contaminated with mycotoxins harmful to humans and animals. During the past decade, F. graminearum has caused several severe epidemics of head scab in wheat and barley. In order to understand molecular mechanisms regulating fungal development and pathogenicity in this pathogen, we isolated and characterized a MAP kinase gene, MGV1, which is highly homologous to the MPS1 gene in Magnaporthe grisea. The MGV1 gene was dispensable for conidiation in F. graminearum but essential for female fertility during sexual reproduction. Vegetative growth of mgv1 deletion mutants was normal in liquid media but reduced on solid media. Mycelia of the mgv1 mutants had weak cell walls and were hypersensitive to cell wall degrading enzymes. Interestingly, the mgv1 mutants were self-incompatible when tested for heterokaryon formation, and their virulence was substantially reduced. The ability of the mutants to accumulate trichothecene mycotoxins on inoculated wheat was also greatly reduced. Our data suggest that MGV1 in F. graminearum is involved in multiple developmental processes related to sexual reproduction, plant infection, and cell wall integrity.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 908-908 ◽  
Author(s):  
S. T. Koike ◽  
O. Daugovish

Shiso (Perilla frutescens) is a leafy herb in the Lamiaceae family and is widely used in Japanese and other Asian cuisine for cooking, pickling, oil (from the seeds), and garnish. A number of shiso types are used, though the most common are green shiso (ao-shiso) and red shiso (aka-shiso). In the winter months of 2010 and early spring 2011, a foliar blight disease developed on greenhouse-grown green shiso produced in Ventura County, CA. Initial symptoms were angular, dull green leaf lesions on older foliage. Such lesions often were initiated along leaf edges. As the disease progressed, lesions turned gray green, expanded, and could affect most of the leaf surface. Lesion tissue became dry and papery in texture; signs of a pathogen were not present. Tests for bacterial agents were negative. However, a fungus was consistently isolated from symptomatic leaves. Isolates of this fungus were grown on potato dextrose agar (PDA) in petri plates incubated under fluorescent lights and were identified as Botrytis cinerea (1). On PDA, mycelial growth was gray brown and conidiophores measured 2 mm or longer and were branched at the terminals. Conidia were aseptate, hyaline, ellipsoidal, and measured (6.5–) 8.4 to 9.2 (–12.0) × (6.1–) 6.8 to 8.0 (–9.5) μm. Sclerotia were not present. Pathogenicity of four isolates was tested by spraying conidial suspensions (1 × 105 conidia/ml) until runoff onto sets of potted green and red shiso plants. Each set consisted of six wounded (leaf tips cut) and six unwounded plants. Plants were enclosed in plastic bags for 48 h and then maintained at 22 to 24°C in a greenhouse. After 4 days, leaf lesions developed on both wounded and unwounded leaves of green and red shiso. The resulting symptoms were similar to those observed in commercial production and B. cinerea was recovered from symptomatic tissue. Non-inoculated, wounded, and unwounded red and green shiso plants were sprayed with distilled water and did not develop symptoms. This experiment was conducted two times and results were the same. To our knowledge, this is the first report of gray mold of shiso in the United States caused by B. cinerea. The disease caused significant damage to the shiso crop because symptomatic leaves are unacceptable for market. In 2010, the greenhouse facility that contained the diseased shiso had numerous leaks in the roof; winter rains that occurred during this time therefore resulted in higher free moisture and humidity in the growing area, which likely provided optimum environmental conditions for the pathogen to infect and cause disease on shiso. Reference: (1) M. B. Ellis and J. M. Waller. CMI Descriptions of Pathogenic Fungi and Bacteria. No. 431, 1974.


2021 ◽  
Vol 12 ◽  
Author(s):  
Na Liu ◽  
Shanyue Zhou ◽  
Baohua Li ◽  
Weichao Ren

Gray mold caused by Botrytis cinerea is a devastating disease that leads to huge economic losses worldwide. Autophagy is an evolutionarily conserved process that maintains intracellular homeostasis through self-eating. In this study, we identified and characterized the biological function of the autophagy-related protein Atg6 in B. cinerea. Targeted deletion of the BcATG6 gene showed block of autophagy and several phenotypic defects in aspects of mycelial growth, conidiation, sclerotial formation and virulence. All of the phenotypic defects were restored by targeted gene complementation. Taken together, these results suggest that BcAtg6 plays important roles in the regulation of various cellular processes in B. cinerea.


Sign in / Sign up

Export Citation Format

Share Document