scholarly journals A warm jet in a cold ocean

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.

2020 ◽  
Author(s):  
Maria Luneva ◽  
Yevgeny Aksenov ◽  
Vladimir Ivanov ◽  
Stephen Kelly ◽  
Fedor Tuzov

<p>We explore dense water cascading (DWC; a type of bottom-trapped gravity current) on multi-decadal time scales using a pan-Arctic regional ocean-ice model. DWC is particularly important in the Arctic Ocean as the main mechanism of ventilation of interior waters when open ocean convection is blocked by strong density stratification. We identify the locations where the most intense DWC events occur and evaluate the associated cross-shelf mass, heat and salt fluxes. </p><p> </p><p>A detailed analysis of specific cascading sites around the Beaufort Gyre and adjacent regions is performed. We find that autumn upwelling of warm and saltier Atlantic waters on the shelf and subsequent cooling and mixing of uplifted waters trigger the cascading on the West Chukchi Sea shelf break. We also perform Lagragian particle tacking of low salinity Pacific waters originating at the surface in the Bering Strait; these waters are shown to be modified by brine rejection and cooling, and through subsequent mixing become dense enough to reach depths of 160-200m and below. We examine the role of cascading and shelf upwelling on the shelf waters transformation, pathways and spread of the biological important tracers (O18, Si., DIC snd DIN).</p>


2012 ◽  
Vol 9 (4) ◽  
pp. 2749-2792
Author(s):  
B. Rabe ◽  
P. Dodd ◽  
E. Hansen ◽  
E. Falck ◽  
U. Schauer ◽  
...  

Abstract. The East Greenland Current in the Western Fram Strait is an important pathway for liquid freshwater export from the Arctic Ocean to the Nordic Seas and the North Atlantic subpolar gyre. We analysed five hydrographic surveys and data from moored current meters around 79° N in the Western Fram Strait between 1998 and 2010. To estimate the composition of southward liquid freshwater transports, inventories of liquid freshwater and components from Dodd et al. (2012) were combined with transport estimates from an inverse model between 10.6° W and 4° E. The southward liquid freshwater transports through the section averaged to 92 mSv (2900 km3 yr−1), relative to a salinity of 34.9. The transports consisted of 123 mSv water from rivers and precipitation (meteoric water), 28 mSv freshwater from the Pacific and 60 mSv freshwater deficit due to brine from ice formation. Variability in liquid freshwater and component transports appear to have been partly due to advection of these water masses to the Fram Strait and partly due to variations in the local volume transport; an exception are Pacific Water transports, which showed little co-variability with volume transports. An increase in Pacific Water transports from 2005 to 2010 suggests a release of Pacific Water from the Beaufort Gyre, in line with an observed expansion of Pacific Water towards the Eurasian Basin. The co-variability of meteoric water and brine from ice formation suggests joint processes in the main sea ice formation regions on the Arctic Ocean shelves. In addition, enhanced levels of sea ice melt observed in 2009 likely led to reduced transports of brine from ice formation. At least part of this additional ice melt appears to have been advected from the Beaufort Gyre and from north of the Bering Strait towards the Fram Strait. The observed changes in liquid freshwater component transports are much larger than known trends in the Arctic liquid freshwater inflow from rivers and the Pacific. Instead, recent observations of an increased storage of liquid freshwater in the Arctic Ocean suggest a decreased export of liquid freshwater. This raises the question how fast the accumulated liquid freshwater will be exported from the Arctic Ocean to the deep water formation regions in the North Atlantic and if an increased export will occur through the Fram Strait.


2022 ◽  
Author(s):  
Peter Hitchcock ◽  
Amy Butler ◽  
Andrew Charlton-Perez ◽  
Chaim Garfinkel ◽  
Tim Stockdale ◽  
...  

Abstract. Major disruptions of the winter season, high-latitude, stratospheric polar vortices can result in stratospheric anomalies that persist for months. These sudden stratospheric warming events are recognized as an important potential source of forecast skill for surface climate on subseasonal to seasonal timescales. Realizing this skill in operational subseasonal forecast models remains a challenge, as models must capture both the evolution of the stratospheric polar vortices in addition to their coupling to the troposphere. The processes involved in this coupling remain a topic of open research. We present here the Stratospheric Nudging And Predictable Surface Impacts (SNAPSI) project. SNAPSI is a new model intercomparison protocol designed to study the role of the Arctic and Antarctic stratospheric polar vortices in sub-seasonal to seasonal forecast models. Based on a set of controlled, subseasonal, ensemble forecasts of three recent events, the protocol aims to address four main scientific goals. First, to quantify the impact of improved stratospheric forecasts on near-surface forecast skill. Second, to attribute specific extreme events to stratospheric variability. Third, to assess the mechanisms by which the stratosphere influences the troposphere in the forecast models, and fourth, to investigate the wave processes that lead to the stratospheric anomalies themselves. Although not a primary focus, the experiments are furthermore expected to shed light on coupling between the tropical stratosphere and troposphere. The output requested will allow for a more detailed, process-based community analysis than has been possible with existing databases of subseasonal forecasts.


2012 ◽  
Vol 9 (3) ◽  
pp. 2001-2038 ◽  
Author(s):  
P. Bourgain ◽  
J. C. Gascard ◽  
J. Shi ◽  
J. Zhao

Abstract. Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during IPY period (2007–2008) to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large scale evolution of the upper Western Arctic Ocean based on temperature and salinity summertime observations collected during icebreaker campaigns and from Ice-Tethered Platforms (ITP) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the Near Surface Temperature Maximum due to incoming solar radiation and (3) the water masses advected from the Pacific and Atlantic Oceans into the deep Arctic Ocean. The observations revealed a freshwater content change in the Canadian basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a diversion of the Siberian rivers runoff toward the Eurasian basin at the same time. The Near Surface Temperature Maximum due to incoming solar radiation was almost 1 °C colder in the Southern Canada basin (south of 75° N) in 2010 compared to 2008 which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific waters were also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada basin, both Summer and Winter Pacific waters influence increased between 75° N and 80° N. This was more likely due to a strong recirculation within the Beaufort Gyre. In contrast, south of 75° N, the PaW influence decreased indicative of the fact that they were not responsible for the freshening already mentioned, due to other sources. In addition, in the vicinity of the Chukchi Sea, both Summer and Winter Pacific waters were significantly warmer in 2010 than in 2008 as a consequence of a general warming trend of the Pacific waters entering in the deep Arctic Ocean since 2008. Finally, the warm Atlantic water remained relatively stable between 2008 and 2010 in the Canadian basin despite strong atmospheric shift, probably because of large time lag response. Atlantic water variability resulting from the presence of a warm "pulse-like" event in this region since 2005 was still noticeable even if a cooling effect was observed at a rate of 0.015 °C yr−1 between 2008 and 2010 in that region.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 447-460 ◽  
Author(s):  
P. Bourgain ◽  
J. C. Gascard ◽  
J. Shi ◽  
J. Zhao

Abstract. Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY) period (2007–2008) to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the near-surface temperature maximum due to incoming solar radiation, and (3) the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N) in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW) was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely due to a strong recirculation within the Beaufort Gyre. In contrast, south of 75° N, the cooling and warming of the summer and winter PaW, respectively, suggest that either the PaW was less present in 2010 than in 2008 in this region, and/or the PaW was older in 2010 than in 2008. In addition, in the vicinity of the Chukchi Sea, both summer and winter PaW were significantly warmer in 2010 than in 2008, as a consequence of a general warming trend of the PaW entering in the deep Arctic Ocean as of 2008.


1994 ◽  
Vol 13 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Toshiaki Irizuki

Abstract. Seventy-eight ostracod species belonging to 38 genera are recognized from the late Miocene Fujikotogawa Formation (c. 7–8 Ma), 40 km NE of Akita City, northern Japan. Some 30–40% of the ostracod species belong to the cold water groups (circumpolar and cryophilic species) reported from Plio-Pleistocene formations yielding the Omma-Manganji Fauna, the name given by Otuka (1939) to the Pliocene Japanese cold water molluscan fauna. This study demonstrates that most ostracod species distinguished in deposits yielding the Omma-Manganji Fauna had already appeared in the late Miocene. At least 13 of the ostracod species have been reported from both the Arctic and northern Atlantic Oceans, implying migration from the Pacific to the northern Atlantic through the Arctic after the Bering Strait had been breached. The 13 circumpolar, nine cryophilic and four endemic cold water species are illustrated, with brief taxonomic notes.


2017 ◽  
Vol 30 (12) ◽  
pp. 4463-4475 ◽  
Author(s):  
Liwei Jia ◽  
Xiaosong Yang ◽  
Gabriel Vecchi ◽  
Richard Gudgel ◽  
Thomas Delworth ◽  
...  

This study explores the role of the stratosphere as a source of seasonal predictability of surface climate over Northern Hemisphere extratropics both in the observations and climate model predictions. A suite of numerical experiments, including climate simulations and retrospective forecasts, are set up to isolate the role of the stratosphere in seasonal predictive skill of extratropical near-surface land temperature. It is shown that most of the lead-0-month spring predictive skill of land temperature over extratropics, particularly over northern Eurasia, stems from stratospheric initialization. It is further revealed that this predictive skill of extratropical land temperature arises from skillful prediction of the Arctic Oscillation (AO). The dynamical connection between the stratosphere and troposphere is also demonstrated by the significant correlation between the stratospheric polar vortex and sea level pressure anomalies, as well as the migration of the stratospheric zonal wind anomalies to the lower troposphere.


2017 ◽  
Author(s):  
Masanobu Yamamoto ◽  
Seung-Il Nam ◽  
Leonid Polyak ◽  
Daisuke Kobayashi ◽  
Kenta Suzuki ◽  
...  

Abstract. The Beaufort Gyre (BG) and the Bering Strait inflow (BSI) are important elements of the Arctic Ocean circulation system and major controls on the distribution of Arctic sea ice. We report records of the quartz/feldspar and chlorite/illite ratios in three sediment cores from the northern Chukchi Sea providing insights into the long-term dynamics of the BG circulation and the BSI during the Holocene. The quartz/feldspar ratio, a proxy of the BG strength, gradually decreased during the Holocene, suggesting a long-term decline in the BG strength, consistent with orbitally-controlled decrease in summer insolation. We suppose that the BG rotation weakened as a result of increasing stability of sea-ice cover at the margins of the Canada Basin, driven by decreasing insolation. Millennial to multi-centennial variability in the quartz/feldspar ratio (the BG circulation) is consistent with fluctuations in solar irradiance, suggesting that solar activity affected the BG strength on these timescales. The BSI approximated by the chlorite/illite record shows intensified flow from the Bering Sea to the Arctic during the middle Holocene, which is attributed primarily to the effect of an overall weaker Aleutian Low. The middle Holocene intensification of the BSI was associated with decrease in sea ice concentrations and increase in marine production, as indicated by biomarker concentrations, suggesting an influence of the BSI on sea ice distribution and biological production in the Chukchi Sea.


2021 ◽  
Author(s):  
◽  
Peter A. Roemer

The Beaufort Gyre region of the Arctic Ocean is strongly stratified at the base of the wintertime mixed layer, which impedes the vertical transport of heat, energy, and other tracers. Ice-Tethered Profiler observations during 2004-2018 were used to characterize and investigate the seasonal and interannual variability of the strength, depth, density, and thickness of this highly stratified layer at the base of the mixed layer. This includes investigating the remnant stratification maximum, which formed when the summer mixed layer shoaled. Seasonally, the stratification maximum was never in a steady state. It was largest in October (4.8 × 10−3 rad2/sec2) and decreased during all winter months (to 2.3 × 10−3rad2/sec2 in June), indicating that surface forcing and interior vertical mixing were never in equilibrium during the year. Interannually, the period from 2011-2018 had a higher stratification maximum than then the period from 2005-2010 regardless of the season. The remnant stratification maximum was consistently weaker than the winter stratification maximum from which it formed. The initial evolution of the remnant stratification maximum is used to estimate an effective vertical diffusivity of order 10−6m2/s. No significant geographic variability was found, in part due to high temporal and small scale variability of the stratification maximum layer. Implications for heat transport through to the sea ice cover are discussed.


2020 ◽  
Vol 50 (3) ◽  
pp. 809-825
Author(s):  
Nicole Couto ◽  
Matthew H. Alford ◽  
Jennifer MacKinnon ◽  
John B. Mickett

AbstractThree shipboard survey lines were occupied in Bering Strait during autumn of 2015, where high-resolution measurements of temperature, salinity, velocity, and turbulent dissipation rates were collected. These first-reported turbulence measurements in Bering Strait show that dissipation rates here are high even during calm winds. High turbulence in the strait has important implications for the modification of water properties during transit from the Pacific Ocean to the Arctic Ocean. Measured diffusivities averaging 2 × 10−2 m2 s−1 are capable of causing watermass property changes of 0.1°C and 0.1 psu during the ~1–2-day transit through the narrowest part of the strait. We estimate friction velocity using both the dissipation and profile methods and find a bottom drag coefficient of 2.3 (±0.4) × 10−3. This result is smaller than values typically used to estimate bottom stress in the region and may improve predictions of transport variability through Bering Strait.


Sign in / Sign up

Export Citation Format

Share Document