scholarly journals Noiseless photonic non-reciprocity via optically-induced magnetization

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xin-Xin Hu ◽  
Zhu-Bo Wang ◽  
Pengfei Zhang ◽  
Guang-Jie Chen ◽  
Yan-Lei Zhang ◽  
...  

AbstractThe realization of optical non-reciprocity is crucial for many applications, and also of fundamental importance for manipulating and protecting the photons with desired time-reversal symmetry. Recently, various new mechanisms of magnetic-free non-reciprocity have been proposed and implemented, avoiding the limitation of the strong magnetic field imposed by the Faraday effect. However, due to the difficulties in separating the signal photons from the drive laser and the noise photons induced by the drive laser, these devices exhibit limited isolation performances and their quantum noise properties are rarely studied. Here, we demonstrate an approach of magnetic-free non-reciprocity by optically-induced magnetization in an atom ensemble. Excellent isolation (highest isolation ratio is $$51.{5}_{-2.5}^{+6.5}\ {\rm{dB}}$$ 51 . 5 − 2.5 + 6.5 dB ) is observed over a power dynamic range of 7 orders of magnitude, with the noiseless property verified by quantum statistics measurements. The approach is applicable to other atoms and atom-like emitters, paving the way for future studies of integrated photonic non-reciprocal devices.

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Paul Eugenio ◽  
Ceren Dag

Strong interactions between electrons occupying bands of opposite (or like) topological quantum numbers (Chern=\pm1=±1), and with flat dispersion, are studied by using lowest Landau level (LLL) wavefunctions. More precisely, we determine the ground states for two scenarios at half-filling: (i) LLL’s with opposite sign of magnetic field, and therefore opposite Chern number; and (ii) LLL’s with the same magnetic field. In the first scenario – which we argue to be a toy model inspired by the chirally symmetric continuum model for twisted bilayer graphene – the opposite Chern LLL’s are Kramer pairs, and thus there exists time-reversal symmetry (\mathbb{Z}_2ℤ2). Turning on repulsive interactions drives the system to spontaneously break time-reversal symmetry – a quantum anomalous Hall state described by one particle per LLL orbital, either all positive Chern |{++\cdots+}\rangle|++⋯+⟩ or all negative |{--\cdots-}\rangle|−−⋯−⟩. If instead, interactions are taken between electrons of like-Chern number, the ground state is an SU(2)SU(2) ferromagnet, with total spin pointing along an arbitrary direction, as with the \nu=1ν=1 spin-\frac{1}{2}12 quantum Hall ferromagnet. The ground states and some of their excitations for both of these scenarios are argued analytically, and further complimented by density matrix renormalization group (DMRG) and exact diagonalization.


Science ◽  
2020 ◽  
Vol 367 (6480) ◽  
pp. 895-900 ◽  
Author(s):  
Yujun Deng ◽  
Yijun Yu ◽  
Meng Zhu Shi ◽  
Zhongxun Guo ◽  
Zihan Xu ◽  
...  

In a magnetic topological insulator, nontrivial band topology combines with magnetic order to produce exotic states of matter, such as quantum anomalous Hall (QAH) insulators and axion insulators. In this work, we probe quantum transport in MnBi2Te4 thin flakes—a topological insulator with intrinsic magnetic order. In this layered van der Waals crystal, the ferromagnetic layers couple antiparallel to each other; atomically thin MnBi2Te4, however, becomes ferromagnetic when the sample has an odd number of septuple layers. We observe a zero-field QAH effect in a five–septuple-layer specimen at 1.4 kelvin, and an external magnetic field further raises the quantization temperature to 6.5 kelvin by aligning all layers ferromagnetically. The results establish MnBi2Te4 as an ideal arena for further exploring various topological phenomena with a spontaneously broken time-reversal symmetry.


2014 ◽  
Vol 28 (07) ◽  
pp. 1430003 ◽  
Author(s):  
CHENJIE WANG ◽  
D. E. FELDMAN

Fluctuation theorems establish deep relations between observables away from thermal equilibrium. Until recently, the research on fluctuation theorems was focused on time-reversal-invariant systems. In this review we address some newly discovered fluctuation relations that hold without the time-reversal symmetry, in particular, in the presence of an external magnetic field. One family of relations connects nonlinear transport coefficients in the opposite magnetic fields. Another family relates currents and noises at a fixed direction of the magnetic field in chiral systems, such as the edges of some quantum Hall liquids. We review the recent experimental and theoretical research, including the controversy about the microreversibility without the time-reversal symmetry, consider the applications of fluctuation theorems to the physics of topological states of matter, and discuss open problems.


2017 ◽  
Vol 96 (1) ◽  
Author(s):  
Sara Bonella ◽  
Alessandro Coretti ◽  
Lamberto Rondoni ◽  
Giovanni Ciccotti

2018 ◽  
Vol 5 (4) ◽  
pp. 172447 ◽  
Author(s):  
Daniel Hey ◽  
Enbang Li

Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions.


Sign in / Sign up

Export Citation Format

Share Document