scholarly journals RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ryan M. Carr ◽  
Denis Vorobyev ◽  
Terra Lasho ◽  
David L. Marks ◽  
Ezequiel J. Tolosa ◽  
...  

AbstractProliferative chronic myelomonocytic leukemia (pCMML), an aggressive CMML subtype, is associated with dismal outcomes. RAS pathway mutations, mainly NRASG12D, define the pCMML phenotype as demonstrated by our exome sequencing, progenitor colony assays and a Vav-Cre-NrasG12D mouse model. Further, these mutations promote CMML transformation to acute myeloid leukemia. Using a multiomics platform and biochemical and molecular studies we show that in pCMML RAS pathway mutations are associated with a unique gene expression profile enriched in mitotic kinases such as polo-like kinase 1 (PLK1). PLK1 transcript levels are shown to be regulated by an unmutated lysine methyl-transferase (KMT2A) resulting in increased promoter monomethylation of lysine 4 of histone 3. Pharmacologic inhibition of PLK1 in RAS mutant patient-derived xenografts, demonstrates the utility of personalized biomarker-driven therapeutics in pCMML.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1710-1710
Author(s):  
Ryan M. Carr ◽  
Terra Lasho ◽  
David Marks ◽  
Ezequiel Tolosa ◽  
Luciana L Almada ◽  
...  

Introduction: Chronic myelomonocytic leukemia (CMML), an aggressive myeloid malignancy, can be categorized into two subtypes, proliferative CMML (pCMML) and dysplastic (dCMML), based on a white blood cell (WBC) count of ≥ 13 x 109/L for the former (Arber et al. Blood 2016). While this WBC cut off is somewhat arbitrary, patients with pCMML have unique phenotypic features and a shorter survival. We carried out this study to assess the genomic, transcriptomic and epigenetic landscapes of these two CMML subtypes. Methods: Peripheral blood (PB) and bone marrow (BM) mononuclear cells (MNC) were obtained from WHO-defined CMML patients. Next generation sequencing (NGS) using a 36-gene panel was performed on 350 patients with Illumina HiSeq4000 platform with median read depth of 400X. RNA sequencing (RNA-seq) was performed on 25 patients by bulk whole transcriptome sequencing using Illumina TruSeq. DNA immunoprecipitation sequencing (DIP-seq) was performed on 18 patients using 5-methylcystocine (5mC), 5-hydroxymethylcytosine (5hmC) and bridging monoclonal antibodies with subsequent paired-end sequencing using HiSeq4000. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed on 30 patients with Illumina HiSeq2500 to a depth of 25 million for histone 3 lysine 4 monomethylation (H3K4me1) and histone 3 lysine 4 trimethylation (H3K4me3) and 50 million reads for histone 3 lysine 27 trimethylation (H3K27me3) and Input per sample. Results: Five hundred and seventy-three patients with WHO defined CMML were included; median age 71 years (range 18-95 years), 67% males. 282 patients had pCMML (49%), while 291 (51%) had dCMML. As pre-defined, patients with pCMML were more likely to have higher absolute monocyte counts (p<0.0001), circulating immature myeloid cells (p<0.0001), PB blasts (p<0.0001), and higher lactate dehydrogenase levels (p=0.03). At last follow up 234 (41%) deaths and 70 (20%) leukemic transformations were documented. The median OS for pCMML vs dCMML in this cohort was 19 months vs 30 months (p<0.0001, Figure 1A) and validated in an independent Austrian cohort (p=0.02). Genomic profiling: NGS performed on 350 patients (BM MNC) revealed a higher frequency of NRAS (35 vs 17%, p=0.004), cumulative RAS pathway (NRAS, KRAS, CBL and PTPN11) (73 vs 47%, p=0.001), ASXL1 (p=0.003) and JAK2V617F (p=0.04) mutations in pCMML relative to dCMML (Figure 1B); while dCMML had a higher frequency of SF3B1 mutations (p=0.02). There were no differences in distribution of TET2 and SRSF2Transcriptomic analysis: RNA-seq was performed on PB MNC from RAS pathway mutant pCMML patients (n=12) and RAS pathway wildtype dCMML patients (n=13). Unsupervised clustering analysis resulted in appropriate segregation revealing distinct expression profiles between disease subtypes (Figure 1C). Compared to dCMML, 3729 genes were significantly differentially upregulated and 2658 genes were differentially downregulated in pCMML. Among genes most highly upregulated were mitotic checkpoint kinases including AURBK, PLK1, PLK2, PLK4 andEpigenetic profiling: ChIP-seq of PB and BM MNC from pCMML (n=18) and dCMML (n=12) patients and healthy, age-matched controls (n=10) revealed a global increase in H3K4me1, without significant differences in H3K4me3 or H3K27me3 occupancies (regardless of stratification by ASXL1 mutational status; 40% ASXL1mt in pCMML, 30% dCMML) in pCMML vs dCMML (Figure 1D). H3K4me1 occupancy was also increased in a sequence-specific manner at the transcription start sites of the aforementioned mitotic kinases (PLK1 and WEE1). DIP-seq was performed on PB MNC to assess global differences in 5-mC and 5-hmC levels, between pCMML (n=9) and dCMML (n=9), with no differences seen between the two subtypes (regardless of TET2 mutational status, 40% TET2mt in each subtype) (Figure 1E). Conclusions: Despite the somewhat arbitrary WBC distinction between pCMML and dCMML, clear phenotypic, genetic, transcriptomic, epigenetic and survival differences exist between the two subtypes, providing strong biological rationale for this distinction. pCMML patients have a higher frequency of oncogenic RAS pathway mutations, a unique transcriptomic profile enriched in mitotic check point kinases and a unique chromatin configuration with global and sequence specific enrichment in H3K4me1, with no significant global differences in 5mC, 5hmC, or H3K4me3 and H3K27me3 occupancy. Figure 1 Disclosures Geissler: AOP: Honoraria; Pfizer: Honoraria; AstraZeneca: Honoraria; Novartis: Honoraria; Celgene: Honoraria; Roche: Honoraria; Abbvie: Honoraria; Ratiopharm: Honoraria; Amgen: Honoraria. Al-Kali:Astex Pharmaceuticals, Inc.: Research Funding. Patnaik:Stem Line Pharmaceuticals.: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2006 ◽  
Vol 108 (7) ◽  
pp. 2349-2357 ◽  
Author(s):  
Chaitali Parikh ◽  
Ramesh Subrahmanyam ◽  
Ruibao Ren

Abstract Activating mutations in RAS, predominantly NRAS, are common in myeloid malignancies. Previous studies in animal models have shown that oncogenic NRAS is unable to induce myeloid malignancies effectively, and it was suggested that oncogenic NRAS might only act as a secondary mutation in leukemogenesis. In this study, we examined the leukemogenicity of NRAS using an improved mouse bone marrow transduction and transplantation model. We found that oncogenic NRAS rapidly and efficiently induced chronic myelomonocytic leukemia (CMML)– or acute myeloid leukemia (AML)– like disease in mice, indicating that mutated NRAS can function as an initiating oncogene in the induction of myeloid malignancies. In addition to CMML and AML, we found that NRAS induced mastocytosis in mice. This result indicates that activation of the RAS pathway also plays an important role in the pathogenesis of mastocytosis. The mouse model for NRAS leukemogenesis established here provides a system for further studying the molecular mechanisms in the pathogenesis of myeloid malignancies and for testing relevant therapies.


Leukemia ◽  
2021 ◽  
Author(s):  
Xiao Fang ◽  
Song’en Xu ◽  
Yiyue Zhang ◽  
Jin Xu ◽  
Zhibin Huang ◽  
...  

AbstractASXL1 is one of the most frequently mutated genes in malignant myeloid diseases. In patients with myeloid malignancies, ASXL1 mutations are usually heterozygous frameshift or nonsense mutations leading to C-terminal truncation. Current disease models have predominantly total loss of ASXL1 or overexpressed C-terminal truncations. These models cannot fully recapitulate leukemogenesis and disease progression. We generated an endogenous C-terminal-truncated Asxl1 mutant in zebrafish that mimics human myeloid malignancies. At the embryonic stage, neutrophil differentiation was explicitly blocked. At 6 months, mutants initially exhibited a myelodysplastic syndrome-like phenotype with neutrophilic dysplasia. At 1 year, about 13% of mutants further acquired the phenotype of monocytosis, which mimics chronic myelomonocytic leukemia, or increased progenitors, which mimics acute myeloid leukemia. These features are comparable to myeloid malignancy progression in humans. Furthermore, transcriptome analysis, inhibitor treatment, and rescue assays indicated that asxl1-induced neutrophilic dysplasia was associated with reduced expression of bmi1a, a subunit of polycomb repressive complex 1 and a reported myeloid leukemia-associated gene. Our model demonstrated that neutrophilic dysplasia caused by asxl1 mutation is a foundation for the progression of myeloid malignancies, and illustrated a possible effect of the Asxl1-Bmi1a axis on regulating neutrophil development.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Peter Rohon ◽  
Jana Vondrakova ◽  
Anna Jonasova ◽  
Milena Holzerova ◽  
Marie Jarosova ◽  
...  

Epigenetic therapy with hypomethylating agent (5-azacytidine; AZA) is common in the management of specific subtypes of myelodysplastic syndrome (MDS), but there are only few studies in chronic myelomonocytic leukemia (CMML) patients. In this paper our experience with 3 CMML patients treated with AZA is described. In one patient transfusion independency was observed after 4 treatment cycles; in one case a partial response was recorded, but a progression to acute myeloid leukemia (AML) after 13 AZA cycles has appeared. In one patient, AZA in reduced dosage was administered as a bridging treatment before allogeneic stem cell transplantation (ASCT), but in the control bone marrow aspirate (before ASCT) a progression to AML was recorded. Future studies are mandatory for evaluation of new molecular and clinical features which could predict the efficiency of hypomethylating agents in CMML therapy with respect to overall survival, event-free survival, quality-adjusted life year, and pharmacoeconomy.


Sign in / Sign up

Export Citation Format

Share Document