Advances in Organometallic Polymers, Ring-Opening Polymerization and the Self-Assembly of Supramolecular Polymers

2005 ◽  
Vol 15 (4) ◽  
pp. 371-388 ◽  
Author(s):  
Richard J. Puddephatt
Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1357
Author(s):  
Michel Nguyen ◽  
Khalid Ferji ◽  
Sébastien Lecommandoux ◽  
Colin Bonduelle

Nucleobase-containing polymers are an emerging class of building blocks for the self-assembly of nanoobjects with promising applications in nanomedicine and biology. Here we present a macromolecular engineering approach to design nucleobase-containing polypeptide polymers incorporating thymine that further self-assemble in nanomaterials. Diblock and triblock copolypeptide polymers were prepared using sequential ring-opening polymerization of γ-Benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and γ-Propargyl-l-glutamate N-carboxyanhydride (PLG-NCA), followed by an efficient copper(I)-catalyzed azide alkyne cycloaddition (CuAAc) functionalization with thymidine monophosphate. Resulting amphiphilic copolymers were able to spontaneously form nanoobjects in aqueous solutions avoiding a pre-solubilization step with an organic solvent. Upon self-assembly, light scattering measurements and transmission electron microscopy (TEM) revealed the impact of the architecture (diblock versus triblock) on the morphology of the resulted nanoassemblies. Interestingly, the nucleobase-containing nanoobjects displayed free thymine units in the shell that were found available for further DNA-binding.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 50543-50552 ◽  
Author(s):  
Weiwei Zhang ◽  
Delong Zhang ◽  
Xiaoshan Fan ◽  
Guangyue Bai ◽  
Yuqin Jiang ◽  
...  

Novel dumbbell-shaped amphiphilic copolymers based on P188 and PLA were synthesized by click chemistry and ring opening polymerization. The self-assembly behavior of the stereocomplexes and the DOX release profile from the aggregates were studied.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul J. Hurst ◽  
Alexander M. Rakowski ◽  
Joseph P. Patterson

Abstract The self-assembly of block copolymers into 1D, 2D and 3D nano- and microstructures is of great interest for a wide range of applications. A key challenge in this field is obtaining independent control over molecular structure and hierarchical structure in all dimensions using scalable one-pot chemistry. Here we report on the ring opening polymerization-induced crystallization-driven self-assembly (ROPI-CDSA) of poly-L-lactide-block-polyethylene glycol block copolymers into 1D, 2D and 3D nanostructures. A key feature of ROPI-CDSA is that the polymerization time is much shorter than the self-assembly relaxation time, resulting in a non-equilibrium self-assembly process. The self-assembly mechanism is analyzed by cryo-transmission electron microscopy, wide-angle x-ray scattering, Fourier transform infrared spectroscopy, and turbidity studies. The analysis revealed that the self-assembly mechanism is dependent on both the polymer molecular structure and concentration. Knowledge of the self-assembly mechanism enabled the kinetic trapping of multiple hierarchical structures from a single block copolymer.


2012 ◽  
Vol 84 (12) ◽  
pp. 2569-2578 ◽  
Author(s):  
Chunhui Luo ◽  
Chongyi Chen ◽  
Zhibo Li

A new type of hetero-grafted molecular bottlebrush with polypeptide as backbone was synthesized using graft-onto strategy. Poly(γ-propargyl-L-glutamate) (PPLG) as backbone was firstly synthesized via ring-opening polymerization (ROP) of γ-propargyl-L-glutamate (PLG) N-carboxyanhydride (NCA). Next, polystyrene-N3 (PS-N3) and monomethoxy poly(ethylene glycol)-N3 (mPEG-N3) as side chains were grafted onto the PPLG backbone using copper-catalyzed click reaction, which afforded good grafting density and efficiency. Two polypeptide bottlebrushes with PS-to-mPEG molar ratio at 70/30 and 30/70 were prepared. The self-assembly behaviors of these two polypeptide bottlebrushes were investigated using the cosolvent method, and their supramolecular structures were characterized using light scattering (LS) and electron microscopy.


1995 ◽  
Vol 73 (11) ◽  
pp. 2069-2078 ◽  
Author(s):  
Timothy J. Peckham ◽  
Daniel A. Foucher ◽  
Alan J. Lough ◽  
Ian Manners

The silicon-bridged [1]ferrocenophane Fe(η-C5H3SiMe3)2(SiMe2) (5) was synthesized via the reaction of Li2[Fe(η-C5H3SiMe3)2]•tmeda (tmeda = tetramethylethylenediamine) with Me2SiCl2 in hexanes. The disilane-bridged [2]ferrocenophane Fe(η-C5H3SiMe3)2(Si2Me4) (7) was prepared using a similar route from the disilane ClMe2SiSiMe2Cl. Despite the presence of sterically demanding SiMe3 substituents on the cyclopentadienyl rings, compound 5 was found to undergo thermal ring-opening polymerization at 170 °C to produce very soluble, high molecular weight poly(ferrocenylsilane) 6 with Mw = 1.4 × 105, Mn = 8.4 × 104. However, the [2]ferrocenophane 7 was found to be resistant to thermal ring-opening polymerization even at 350 °C and decomposed above 380 °C. A single-crystal X-ray diffraction study of 7 revealed that the steric interactions between the bulky SiMe3 groups are relieved by a significant twisting of the disilane bridge with respect to the plane defined by the centroids of the cyclopentadienyl ligands and the metal atom. The angle between the planes of the cyclopentadienyl rings in 7 was found to be 5.4(6)°, slightly greater than that in the non-silylated analogue Fe(η-C5H4)2(Si2Me4) (4a) (4.19(2)°), and dramatically less than the corresponding tilt angle of the strained, polymerizable, silicon-bridged [1]ferrocenophane Fe(η-C5H4)2(SiMe2) (1) (20.8(5)°). The length of the Si—Si bond in 7 (2.342(3) Å) was found to be close to the sum of the covalent radii (2.34 Å). Crystals of 7 are monoclinic, space group C2/c, with a = 23.689(3) Å, b = 11.174(1) Å, c = 31.027(3) Å, β = 109.16(1)°, V = 7758(2) Å3, and Z = 12. Keywords: ring-opening polymerization, ferrocenophane, organometallic polymers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oleksandr Shyshov ◽  
Shyamkumar Vadakket Haridas ◽  
Luca Pesce ◽  
Haoyuan Qi ◽  
Andrea Gardin ◽  
...  

AbstractThe development of powerful methods for living covalent polymerization has been a key driver of progress in organic materials science. While there have been remarkable reports on living supramolecular polymerization recently, the scope of monomers is still narrow and a simple solution to the problem is elusive. Here we report a minimalistic molecular platform for living supramolecular polymerization that is based on the unique structure of all-cis 1,2,3,4,5,6-hexafluorocyclohexane, the most polar aliphatic compound reported to date. We use this large dipole moment (6.2 Debye) not only to thermodynamically drive the self-assembly of supramolecular polymers, but also to generate kinetically trapped monomeric states. Upon addition of well-defined seeds, we observed that the dormant monomers engage in a kinetically controlled supramolecular polymerization. The obtained nanofibers have an unusual double helical structure and their length can be controlled by the ratio between seeds and monomers. The successful preparation of supramolecular block copolymers demonstrates the versatility of the approach.


2003 ◽  
pp. 2228 ◽  
Author(s):  
Tara J. Burchell ◽  
Dana J. Eisler ◽  
Michael C. Jennings ◽  
Richard J. Puddephatt

2021 ◽  
Author(s):  
Qianqian Shi ◽  
Yibing Chen ◽  
Junjiao Yang ◽  
Jing Yang

Reported here is the first polyester-based bioactive nanoparticles accessed via ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o-carboxyanhydride (SAOCA) monomers. Superfast ROPISA of SAOCA was completed in 30 seconds to form worm-like morphology.


Sign in / Sign up

Export Citation Format

Share Document