scholarly journals Atomically-resolved interlayer charge ordering and its interplay with superconductivity in YBa2Cu3O6.81

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chun-Chih Hsu ◽  
Bo-Chao Huang ◽  
Michael Schnedler ◽  
Ming-Yu Lai ◽  
Yuh-Lin Wang ◽  
...  

AbstractHigh-temperature superconductive (SC) cuprates exhibit not only a SC phase, but also competing orders, suppressing superconductivity. Charge order (CO) has been recognized as an important competing order, but its microscopic spatial interplay with SC phase as well as the interlayer coupling in CO and SC phases remain elusive, despite being essential for understanding the physical mechanisms of competing orders and hence superconductivity. Here we report the achievement of direct real-space imaging with atomic-scale resolution of cryogenically cleaved YBa2Cu3O6.81 using cross-sectional scanning tunneling microscopy/spectroscopy. CO nanodomains are found embedded in the SC phase with a proximity-like boundary region characterized by mutual suppression of CO and superconductivity. Furthermore, SC coherence as well as CO occur on both CuO chain and plane layers, revealing carrier transport and density of states mixing between layers. The CO antiphase correlation along the c direction suggests a dominance of Coulomb repulsion over Josephson tunneling between adjacent layers.

Science ◽  
2014 ◽  
Vol 345 (6197) ◽  
pp. 653-656 ◽  
Author(s):  
Mostafa Enayat ◽  
Zhixiang Sun ◽  
Udai Raj Singh ◽  
Ramakrishna Aluru ◽  
Stefan Schmaus ◽  
...  

Spin-polarized scanning tunneling microscopy (SP-STM) has been used extensively to study magnetic properties of nanostructures. Using SP-STM to visualize magnetic order in strongly correlated materials on an atomic scale is highly desirable, but challenging. We achieved this goal in iron tellurium (Fe1+yTe), the nonsuperconducting parent compound of the iron chalcogenides, by using a STM tip with a magnetic cluster at its apex. Our images of the magnetic structure reveal that the magnetic order in the monoclinic phase is a unidirectional stripe order; in the orthorhombic phase at higher excess iron concentration (y > 0.12), a transition to a phase with coexisting magnetic orders in both directions is observed. It may be possible to generalize the technique to other high-temperature superconductor families, such as the cuprates.


1996 ◽  
Vol 448 ◽  
Author(s):  
A. Y. Lew ◽  
S. L. Zuo ◽  
E. T. Yu ◽  
R. H. Miles

AbstractWe have used cross-sectional scanning tunneling microscopy to study the atomic-scale interface structure of InAs/Ga, _In.xSb superlattices grown by molecular-beam epitaxy. Detailed, quantitative analysis of interface profiles obtained from constant-current images of both (110) and (1ī0) cross-sectional planes of the superlattice indicates that interfaces in the (1ī0) plane exhibit a higher degree of interface roughness than those in the (110) plane, and that the Ga1-xln xAs interfaces are rougher than the InAs-on-Gal1-xInxSb interfaces. The roughness data are consistent with anisotropy in interface structure arising from anisotropic island formation during growth, and in addition with a growth-sequence-dependent interface asymmetry resulting from differences in interfacial bond structure between the superlattice layers. Roughness data are compared with measurements of anisotropy in low-temperature Hall mobilities of the samples.


1993 ◽  
Vol 63 (9) ◽  
pp. 1273-1275 ◽  
Author(s):  
M. B. Johnson ◽  
U. Maier ◽  
H.‐P. Meier ◽  
H. W. M. Salemink

2020 ◽  
Vol 102 (12) ◽  
Author(s):  
D. Tjeertes ◽  
T. J. F. Verstijnen ◽  
A. Gonzalo ◽  
J. M. Ulloa ◽  
M. S. Sharma ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. eaay4289 ◽  
Author(s):  
Zhe Li ◽  
Hsin-Yi Tiffany Chen ◽  
Koen Schouteden ◽  
Thomas Picot ◽  
Ting-Wei Liao ◽  
...  

The free-standing Au20 cluster has a unique tetrahedral shape and a large HOMO-LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap of around 1.8 electron volts. The “magic” Au20 has been intensively used as a model system for understanding the catalytic and optical properties of gold nanoclusters. However, direct real-space ground-state characterization at the atomic scale is still lacking, and obtaining fundamental information about the corresponding structural, electronic, and dynamical properties, is challenging. Here, using cluster-beam deposition and low-temperature scanning tunneling microscopy, atom-resolved topographic images and electronic spectra of supported Au20 clusters are obtained. We demonstrate that individual size-selected Au20 on ultrathin NaCl films maintains its pyramidal structure and large HOMO-LUMO gap. At higher cluster coverages, we find sintering of the clusters via Smoluchowski ripening to Au20n agglomerates. The evolution of the electron density of states deduced from the spectra reveals gap reduction with increasing agglomerate size.


1995 ◽  
Vol 378 ◽  
Author(s):  
X. Liu ◽  
E. R. Weber ◽  
D. F. Ogletree ◽  
M. Salmeron ◽  
T. Slupinski

AbstractWe report cross-sectional scanning tunneling microscopy studies of GaAsP single crystals grown by the Liquid Encapsulated Czochralski technique. We show that the two group-V elements can be clearly distinguished, which is attributed to the difference in energies of surface dangling bond states of As and P. Our atomic scale imaging results show alloy composition in agreement with spectroscopic studies. They also provide valuable information about atomic scale alloy fluctuations and clustering effects.


Sign in / Sign up

Export Citation Format

Share Document