scholarly journals Organization of the inputs and outputs of the mouse superior colliculus

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nora L. Benavidez ◽  
Michael S. Bienkowski ◽  
Muye Zhu ◽  
Luis H. Garcia ◽  
Marina Fayzullina ◽  
...  

AbstractThe superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.

1982 ◽  
Vol 208 (3) ◽  
pp. 239-254 ◽  
Author(s):  
Robert W. Rhoades ◽  
David C. Kuo ◽  
Jeffrey D. Polcer ◽  
Stephen E. Fish ◽  
Theodore J. Voneida

1993 ◽  
Vol 69 (6) ◽  
pp. 1797-1809 ◽  
Author(s):  
M. T. Wallace ◽  
M. A. Meredith ◽  
B. E. Stein

1. Physiological methods were used to examine the pattern of inputs from different sensory cortices onto individual superior colliculus neurons. 2. Visual, auditory, and somatosensory influences from anterior ectosylvian sulcus (AES) and visual influences from lateral suprasylvian (LS) cortex were found to converge onto individual multisensory neurons in the cat superior colliculus. An excellent topographic relationship was found between the different sensory cortices and their target neurons in the superior colliculus. 3. Corticotectal inputs were derived solely from unimodal neurons. Multisensory neurons in AES and LS were not antidromically activated from the superior colliculus. 4. Orthodromic and antidromic latencies were consistent with monosynaptic corticotectal inputs arising from LS and the three subdivisions of AES (SIV, Field AES, and AEV). 5. Superior colliculus neurons that received convergent cortical inputs formed a principal component of the tecto-reticulospinal tract. Thus there appears to be extensive cortical control over the output neurons through which the superior colliculus mediates attentive and orientation behaviors. 6. Two other multisensory circuits were identified. A population of multisensory superior colliculus neurons was found, which neither received convergent cortical input nor projected into the tecto-reticulo-spinal tract. In addition, multisensory neurons in AES and LS proved to be independent of the superior colliculus (i.e., they were not corticotectal). While it is likely that these three distinct multisensory neural circuits have different functional roles, their constituent neurons appear to integrate their various sensory inputs in much the same way.


2011 ◽  
Vol 106 (5) ◽  
pp. 2688-2697 ◽  
Author(s):  
Francesco Negro ◽  
Dario Farina

Oscillations in the primary motor cortex are transmitted through the corticospinal tract to the motoneuron pool. This pathway is believed to produce an effective and direct command from the motor cortex to the spinal motoneurons for the modulation of the force output. In this study, we used a computational model of a population of motoneurons to investigate the factors that can influence the transmission of the cortical input to the output of motoneurons, since it can be quantified by coherence analysis. The simulations demonstrated that, despite the nonlinearity of the motoneurons, oscillations present in the cortical input are transmitted to the output of the motoneuron pool at the same frequency. However, the interference introduced by the nonlinearity of the system increases the variability of the oscillations in output, introducing spectral lines whose frequency depends on the input frequencies and the motoneuron discharge rates. Moreover, an additional source of synaptic input common to all motoneurons but independent from the corticospinal component decorrelates the cortical input and motoneuron output and, thus, decreases the magnitude of the estimated coherence, even if the effective cortical drive does not change. These results indicate that the corticospinal input can effectively be sampled by a small population of motoneurons. However, the transmission of a corticospinal drive to the motoneuron pool is influenced by the nonlinearity of the spiking processes of the active motoneurons and by synaptic inputs common to the motoneuron population but independent from the cortical input.


2021 ◽  
Author(s):  
Shinya Ito ◽  
Yufei Si ◽  
Alan M. Litke ◽  
David A. Feldheim

AbstractSensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


2019 ◽  
Author(s):  
Steffen B. E. Wolff ◽  
Raymond Ko ◽  
Bence P. Ölveczky

AbstractThe acquisition and execution of learned motor sequences are mediated by a distributed motor network, spanning cortical and subcortical brain areas. The sensorimotor striatum is an important cog in this network, yet how its two main inputs, from motor cortex and thalamus respectively, contribute to its role in motor learning and execution remains largely unknown. To address this, we trained rats in a task that produces highly stereotyped and idiosyncratic motor sequences. We found that motor cortical input to the sensorimotor striatum is critical for the learning process, but after the behaviors were consolidated, this corticostriatal pathway became dispensable. Functional silencing of striatal-projecting thalamic neurons, however, disrupted the execution of the learned motor sequences, causing rats to revert to behaviors produced early in learning and preventing them from re-learning the task. These results show that the sensorimotor striatum is a conduit through which motor cortical inputs can drive experience-dependent changes in subcortical motor circuits, likely at thalamostriatal synapses.


Author(s):  
Thomas D. Wright ◽  
Jamie Ward

There has been considerable effort devoted towards understanding sensory substitution devices in terms of their relationship to canonical sensory modalities. The approach taken in this essay is rather different, although complementary, in that we seek to define a broad conceptual space of ‘sensory tools’ in which sensory substitution devices can be situated. Such devices range from telescopes, to cochlear implants, to attempts to create a magnetic sense. One feature of these devices is that they operate at the level of ‘raw’ sensory information. As such, systems such as Braille which operate at a symbolic/conceptual level do not count as a sensory tool (or a sensory substitution device) and nor would a device such as CCTV which, although capturing raw sensory information, would not meet a conventional definition of a tool. With this approach, we hope to avoid the circularity inherent in previous attempts at defining sensory substitution and provide a better starting point to explore the effects of sensory tools, more generally, on the functioning of the nervous system.


Author(s):  
J. Eric Ahlskog

As a prelude to the treatment chapters that follow, we need to define and describe the types of problems and symptoms encountered in DLB and PDD. The clinical picture can be quite varied: problems encountered by one person may be quite different from those encountered by another person, and symptoms that are problematic in one individual may be minimal in another. In these disorders, the Lewy neurodegenerative process potentially affects certain nervous system regions but spares others. Affected areas include thinking and memory circuits, as well as movement (motor) function and the autonomic nervous system, which regulates primary functions such as bladder, bowel, and blood pressure control. Many other brain regions, by contrast, are spared or minimally involved, such as vision and sensation. The brain and spinal cord constitute the central nervous system. The interface between the brain and spinal cord is by way of the brain stem, as shown in Figure 4.1. Thought, memory, and reasoning are primarily organized in the thick layers of cortex overlying lower brain levels. Volitional movements, such as writing, throwing, or kicking, also emanate from the cortex and integrate with circuits just below, including those in the basal ganglia, shown in Figure 4.2. The basal ganglia includes the striatum, globus pallidus, subthalamic nucleus, and substantia nigra, as illustrated in Figure 4.2. Movement information is integrated and modulated in these basal ganglia nuclei and then transmitted down the brain stem to the spinal cord. At spinal cord levels the correct sequence of muscle activation that has been programmed is accomplished. Activated nerves from appropriate regions of the spinal cord relay the signals to the proper muscles. Sensory information from the periphery (limbs) travels in the opposite direction. How are these signals transmitted? Brain cells called neurons have long, wire-like extensions that interface with other neurons, effectively making up circuits that are slightly similar to computer circuits; this is illustrated in Figure 4.3. At the end of these wire-like extensions are tiny enlargements (terminals) that contain specific biological chemicals called neurotransmitters. Neurotransmitters are released when the electrical signal travels down that neuron to the end of that wire-like process.


2007 ◽  
Vol 98 (2) ◽  
pp. 681-695 ◽  
Author(s):  
Philip H. Smith ◽  
Edward L. Bartlett ◽  
Anna Kowalkowski

The paralaminar nuclei, including the medial division of the medial geniculate nucleus, surround the auditory thalamus medially and ventrally. This multimodal area receives convergent inputs from auditory, visual, and somatosensory structures and sends divergent outputs to cortical layer 1, amygdala, basal ganglia, and elsewhere. Studies implicate this region in the modulation of cortical 40-Hz oscillations, cortical information binding, and the conditioned fear response. We recently showed that the basic anatomy and intrinsic physiology of paralaminar cells are unlike that of neurons elsewhere in sensory thalamus. Here we evaluate the synaptic inputs to paralaminar cells from the inferior and superior colliculi and the cortex. Combined physiological and anatomical evidence indicates that paralaminar cells receive both excitatory and inhibitory inputs from both colliculi and excitatory cortical inputs. Excitatory inputs from all three sources typically generate small summating EPSPs composed of AMPA and NMDA components and terminate primarily on smaller dendrites and occasionally on dendritic spines. The cortical input shows strong paired-pulse facilitation (PPF), whereas both collicular inputs show weak PPF or paired-pulse depression (PPD). EPSPs of cells with no low-threshold calcium conductance do not evoke a burst response when the cell is hyperpolarized. Longer-latency EPSPs were seen and our evidence indicates that these arise from axon collateral inputs of other synaptically activated paralaminar cells. The inhibitory collicular inputs are GABAergic, activate GABAA receptors, and terminate on dendrites. Their activation can greatly alter EPSP-generated spike number and timing.


2020 ◽  
Vol 123 (6) ◽  
pp. 2406-2425
Author(s):  
Tyler R. Sizemore ◽  
Laura M. Hurley ◽  
Andrew M. Dacks

The serotonergic system has been widely studied across animal taxa and different functional networks. This modulatory system is therefore well positioned to compare the consequences of neuromodulation for sensory processing across species and modalities at multiple levels of sensory organization. Serotonergic neurons that innervate sensory networks often bidirectionally exchange information with these networks but also receive input representative of motor events or motivational state. This convergence of information supports serotonin’s capacity for contextualizing sensory information according to the animal’s physiological state and external events. At the level of sensory circuitry, serotonin can have variable effects due to differential projections across specific sensory subregions, as well as differential serotonin receptor type expression within those subregions. Functionally, this infrastructure may gate or filter sensory inputs to emphasize specific stimulus features or select among different streams of information. The near-ubiquitous presence of serotonin and other neuromodulators within sensory regions, coupled with their strong effects on stimulus representation, suggests that these signaling pathways should be considered integral components of sensory systems.


Sign in / Sign up

Export Citation Format

Share Document