scholarly journals Precise spatiotemporal control of voltage-gated sodium channels by photocaged saxitoxin

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna V. Elleman ◽  
Gabrielle Devienne ◽  
Christopher D. Makinson ◽  
Allison L. Haynes ◽  
John R. Huguenard ◽  
...  

AbstractHere we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.

2020 ◽  
Author(s):  
Anna V. Elleman ◽  
Gabrielle Devienne ◽  
Christopher D. Makinson ◽  
Allison L. Haynes ◽  
John R. Huguenard ◽  
...  

SummaryHere we report the pharmacologic blockade of voltage-gated sodium ion channels (NaV) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaV blockade to interrupt action potentials (APs) in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in AP propagation, with unmyelinated axons preferentially showing reduced AP fidelity under conditions of partial NaV blockade. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and AP generation.


2017 ◽  
Author(s):  
Kenneth R. Tovar ◽  
Daniel C. Bridges ◽  
Bian Wu ◽  
Connor Randall ◽  
Morgane Audouard ◽  
...  

AbstractThe small caliber of central nervous system (CNS) axons makes routine study of axonal physiology relatively difficult. However, while recording extracellular action potentials from neurons cultured on planer multi-electrode arrays (MEAs) we found activity among groups of electrodes consistent with action potential propagation in single neurons. Action potential propagation was evident as widespread, repetitive cooccurrence of extracellular action potentials (eAPs) among groups of electrodes. These eAPs occurred with invariant sequences and inter-electrode latencies that were consistent with reported measures of action potential propagation in unmyelinated axons. Within co-active electrode groups, the inter-electrode eAP latencies were temperature sensitive, as expected for action potential propagation. Our data are consistent with these signals primarily reflecting axonal action potential propagation, from axons with a high density of voltage-gated sodium channels. Repeated codetection of eAPs by multiple electrodes confirmed these eAPs are from individual neurons and averaging these eAPs revealed sub-threshold events at other electrodes. The sequence of electrodes at which eAPs co-occur uniquely identifies these neurons, allowing us to monitor spiking of single identified neurons within neuronal ensembles. We recorded dynamic changes in single axon physiology such as simultaneous increases and decreases in excitability in different portions of single axonal arbors over several hours. Over several weeks, we measured changes in inter-electrode propagation latencies and ongoing changes in excitability in different regions of single axonal arbors. We recorded action potential propagation signals in human induced pluripotent stem cell-derived neurons which could thus be used to study axonal physiology in human disease models.Significance StatementStudying the physiology of central nervous system axons is limited by the technical challenges of recording from axons with pairs of patch or extracellular electrodes at two places along single axons. We studied action potential propagation in single axonal arbors with extracellular recording with multi-electrode arrays. These recordings were non-invasive and were done from several sites of small caliber axons and branches. Unlike conventional extracellular recording, we unambiguously identified and labelled the neuronal source of propagating action potentials. We manipulated and quantified action potential propagation and found a surprisingly high density of axonal voltage-gated sodium channels. Our experiments also demonstrate that the excitability of different portions of axonal arbors can be independently regulated on time scales from hours to weeks.


2007 ◽  
Vol 98 (6) ◽  
pp. 3666-3676 ◽  
Author(s):  
Hai Xia Zhang ◽  
Liu Lin Thio

Although extracellular Zn2+ is an endogenous biphasic modulator of strychnine-sensitive glycine receptors (GlyRs), the physiological significance of this modulation remains poorly understood. Zn2+ modulation of GlyR may be especially important in the hippocampus where presynaptic Zn2+ is abundant. Using cultured embryonic mouse hippocampal neurons, we examined whether 1 μM Zn2+, a potentiating concentration, enhances the inhibitory effects of GlyRs activated by sustained glycine applications. Sustained 20 μM glycine (EC25) applications alone did not decrease the number of action potentials evoked by depolarizing steps, but they did in 1 μM Zn2+. At least part of this effect resulted from Zn2+ enhancing the GlyR-induced decrease in input resistance. Sustained 20 μM glycine applications alone did not alter neuronal bursting, a form of hyperexcitability induced by omitting extracellular Mg2+. However, sustained 20 μM glycine applications depressed neuronal bursting in 1 μM Zn2+. Zn2+ did not enhance the inhibitory effects of sustained 60 μM glycine (EC70) applications in these paradigms. These results suggest that tonic GlyR activation could decrease neuronal excitability. To test this possibility, we examined the effect of the GlyR antagonist strychnine and the Zn2+ chelator tricine on action potential firing by CA1 pyramidal neurons in mouse hippocampal slices. Co-applying strychnine and tricine slightly but significantly increased the number of action potentials fired during a depolarizing current step and decreased the rheobase for action potential firing. Thus Zn2+ may modulate neuronal excitability normally and in pathological conditions such as seizures by potentiating GlyRs tonically activated by low agonist concentrations.


1997 ◽  
Vol 78 (6) ◽  
pp. 3484-3488 ◽  
Author(s):  
Huanmian Chen ◽  
Nevin A. Lambert

Chen, Huanmian and Nevin A. Lambert. Inhibition of dendritic calcium influx by activation of G-protein–coupled receptors in the hippocampus. J. Neurophysiol. 78: 3484–3488, 1997. Gi proteins inhibit voltage-gated calcium channels and activate inwardly rectifying K+ channels in hippocampal pyramidal neurons. The effect of activation of G-protein–coupled receptors on action potential-evoked calcium influx was examined in pyramidal neuron dendrites with optical and extracellular voltage recording. We tested the hypotheses that 1) activation of these receptors would inhibit calcium channels in dendrites; 2) hyperpolarization resulting from K+ channel activation would deinactivate low-threshold, T-type calcium channels on dendrites, increasing calcium influx mediated by these channels; and 3) activation of these receptors would inhibit propagation of action potentials into dendrites, and thus indirectly decrease calcium influx. Activation of adenosine receptors, which couple to Gi proteins, inhibited calcium influx in cell bodies and proximal dendrites without inhibiting action-potential propagation into the proximal dendrites. Inhibition of dendritic calcium influx was not changed in the presence of 50 μM nickel, which preferentially blocks T-type channels, suggesting influx through these channels is not increased by activation of G-proteins. Adenosine inhibited propagation of action potentials into the distal branches of pyramidal neuron dendrites, leading to a three- to fourfold greater inhibition of calcium influx in the distal dendrites than in the soma or proximal dendrites. These results suggest that voltage-gated calcium channels are inhibited in pyramidal neuron dendrites, as they are in cell bodies and terminals and thatG-protein–mediated inhibition of action-potential propagation can contribute substantially to inhibition of dendritic calcium influx.


2016 ◽  
Vol 113 (19) ◽  
pp. E2665-E2674 ◽  
Author(s):  
Juan Lorenzo Pablo ◽  
Chaojian Wang ◽  
Matthew M. Presby ◽  
Geoffrey S. Pitt

Clustering of voltage-gated sodium channels (VGSCs) within the neuronal axon initial segment (AIS) is critical for efficient action potential initiation. Although initially inserted into both somatodendritic and axonal membranes, VGSCs are concentrated within the axon through mechanisms that include preferential axonal targeting and selective somatodendritic endocytosis. How the endocytic machinery specifically targets somatic VGSCs is unknown. Here, using knockdown strategies, we show that noncanonical FGF13 binds directly to VGSCs in hippocampal neurons to limit their somatodendritic surface expression, although exerting little effect on VGSCs within the AIS. In contrast, homologous FGF14, which is highly concentrated in the proximal axon, binds directly to VGSCs to promote their axonal localization. Single-point mutations in FGF13 or FGF14 abrogating VGSC interaction in vitro cannot support these specific functions in neurons. Thus, our data show how the concerted actions of FGF13 and FGF14 regulate the polarized localization of VGSCs that supports efficient action potential initiation.


2017 ◽  
Author(s):  
Mara Almog ◽  
Tal Barkai ◽  
Angelika Lampert ◽  
Alon Korngreen

AbstractExploring the properties of action potentials is a crucial step towards a better understanding of the computational properties of single neurons and neural networks. The voltage-gated sodium channel is a key player in action potential generation. A comprehensive grasp of the gating mechanism of this channel can shed light on the biophysics of action potential generation. Most models of voltage-gated sodium channels assume it obeys a concerted Hodgkin and Huxley kinetic gating scheme. Here we performed high resolution voltage-clamp experiments from nucleated patches extracted from the soma of layer 5 (L5) cortical pyramidal neurons in rat brain slices. We show that the gating mechanism does not follow traditional Hodgkin and Huxley kinetics and that much of the channel voltage-dependence is probably due to rapid closed-closed transitions that lead to substantial onset latency reminiscent of the Cole-Moore effect observed in voltage-gated potassium conductances. This may have key implications for the role of sodium channels in synaptic integration and action potential generation.


2020 ◽  
Author(s):  
Daria Y. Romanova ◽  
Ivan V. Smirnov ◽  
Mikhail A. Nikitin ◽  
Andrea B. Kohn ◽  
Alisa I. Borman ◽  
...  

AbstractPlacozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched animal lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.HighlightsPlacozoans are the simplest known animals without recognized neurons and musclesWith only six morphological cell types, placozoans showed complex & rapid behaviorsSodium-dependent action potentials have been discovered in intact animalsVoltage-gated sodium channels (Nav) in Placozoa support a rapid behavioral integrationPlacozoans have more Nav channels that any studied invertebrate animal so farDiversification of Nav-channels highlight the unique evolution of these nerveless animals


2001 ◽  
Vol 281 (6) ◽  
pp. R1792-R1800 ◽  
Author(s):  
Lili Zhang ◽  
John D. Tompkins ◽  
John C. Hancock ◽  
Donald B. Hoover

—Application of substance P (SP) to intracardiac neurons of the guinea pig causes slow depolarization and increases neuronal excitability. The present study was done to determine the influence of SP on fast excitatory responses of intracardiac neurons to ACh. Intracellular recording methods were used to measure responses of intracardiac neurons in whole mount preparations of atrial ganglionated nerve plexus from guinea pig hearts. Local pressure ejection of 100 μM SP (1 s) from a glass micropipette caused slow depolarization of all neurons ( n = 38) and triggered action potential generation in 47% of the cells tested. Bath application of SP (0.5–100 μM) caused a dose-dependent depolarization of intracardiac neurons but rarely evoked action potentials, even at the highest concentration. However, such treatment with SP enhanced nicotinic responses evoked by local pressure ejections of ACh (10 mM, 10- to 100-ms duration) in 77% of intracardiac neurons studied ( n = 52). A significant increase in amplitude of ACh-evoked fast depolarization occurred during treatment with 0.5 μM SP (13.0 ± 1.8 mV for control vs. 17.7 ± 1.9 mV with SP present, n = 7, P = 0.019). At higher concentrations of SP, enhancement of the response to ACh resulted mainly in action potential generation. However, responses to ACh were attenuated by SP in 15% of the intracardiac neurons studied. This attenuation occurred primarily during exposure to 10 and 100 μM SP and was manifest as a reduction in amplitude of nicotinic fast depolarization or inhibition of ACh-evoked action potentials. These findings support the conclusion that SP could function as a neuromodulator and neurotransmitter in intracardiac ganglia of the guinea pig.


Sign in / Sign up

Export Citation Format

Share Document