scholarly journals A genome-scale metabolic model of Saccharomyces cerevisiae that integrates expression constraints and reaction thermodynamics

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Omid Oftadeh ◽  
Pierre Salvy ◽  
Maria Masid ◽  
Maxime Curvat ◽  
Ljubisa Miskovic ◽  
...  

AbstractEukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the most accurate models of biological systems include Expression and Thermodynamics FLux (ETFL), which efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the presented formulation can be extended to a wide range of eukaryotic organisms to the benefit of academic and industrial research.

2021 ◽  
Author(s):  
Omid Oftadeh ◽  
Pierre Salvy ◽  
Maria Masid ◽  
Maxime Curvat ◽  
Ljubisa Miskovic ◽  
...  

AbstractEukaryotic organisms play an important role in industrial biotechnology, from the production of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial systems, a mathematical approach can be used to integrate the description of multiple biological networks into a single model for cell analysis and engineering. One of the current most accurate models of biological systems include metabolism and expression (ME-models), and Expression and Thermodynamics FLux (ETFL) is one such formulation that efficiently integrates RNA and protein synthesis with traditional genome-scale metabolic models. However, ETFL is so far only applicable for E. coli. To therefore adapt this ME-model for Saccharomyces cerevisiae, we herein developed yETFL. To do this, we augmented the original formulation with additional considerations for biomass composition, the compartmentalized cellular expression system, and the energetic costs of biological processes. We demonstrated the predictive ability of yETFL to capture maximum growth rate, essential genes, and the phenotype of overflow metabolism. We envision that the extended ETFL formulation can be applied to ME-model development for a wide range of eukaryotic organisms. The utility of these ME-models can be extended into academic and industrial research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Javad Aminian-Dehkordi ◽  
Seyyed Mohammad Mousavi ◽  
Arezou Jafari ◽  
Ivan Mijakovic ◽  
Sayed-Amir Marashi

AbstractBacillus megaterium is a microorganism widely used in industrial biotechnology for production of enzymes and recombinant proteins, as well as in bioleaching processes. Precise understanding of its metabolism is essential for designing engineering strategies to further optimize B. megaterium for biotechnology applications. Here, we present a genome-scale metabolic model for B. megaterium DSM319, iJA1121, which is a result of a metabolic network reconciliation process. The model includes 1709 reactions, 1349 metabolites, and 1121 genes. Based on multiple-genome alignments and available genome-scale metabolic models for other Bacillus species, we constructed a draft network using an automated approach followed by manual curation. The refinements were performed using a gap-filling process. Constraint-based modeling was used to scrutinize network features. Phenotyping assays were performed in order to validate the growth behavior of the model using different substrates. To verify the model accuracy, experimental data reported in the literature (growth behavior patterns, metabolite production capabilities, metabolic flux analysis using 13C glucose and formaldehyde inhibitory effect) were confronted with model predictions. This indicated a very good agreement between in silico results and experimental data. For example, our in silico study of fatty acid biosynthesis and lipid accumulation in B. megaterium highlighted the importance of adopting appropriate carbon sources for fermentation purposes. We conclude that the genome-scale metabolic model iJA1121 represents a useful tool for systems analysis and furthers our understanding of the metabolism of B. megaterium.


2020 ◽  
Author(s):  
Nhung TT Pham ◽  
Maarten Reijnders ◽  
Maria Suarez-Diez ◽  
Bart Nijsse ◽  
Jan Springer ◽  
...  

Abstract Background: Cutaneotrichosporon oleaginosus ATCC 20509 is a fast growing oleaginous basidiomycete yeast that is able to grow in a wide range of low-cost carbon sources including crude glycerol, a byproduct of biodiesel production. When glycerol is used as a carbon source, this yeast can accumulate more than 50% lipids (w/w) with high concentrations of mono-unsaturated fatty acids. Results: To increase our understanding of this yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated genome was used to build a genome-scale, constraint-based metabolic model containing 1553 reactions involving 1373 metabolites in 11 compartments. A new description of the biomass synthesis reaction was introduced to account for massive lipid accumulation in conditions with high carbon to nitrogen (C/N) ratio in the media. This condition-specific biomass objective function is shown to better predict conditions with high lipid accumulation using glucose, fructose, sucrose, xylose, ethanol and glycerol as sole carbon source. Conclusion: Contributing to the economic viability of biodiesel as renewable fuel, C. oleaginosus ATCC 20509 can effectively convert crude glycerol waste streams in lipids as a potential bioenergy source. Performance simulations are essential to identify optimal production conditions and to develop and fine tune a cost-effective production process. Our model suggests ATP-citrate lyase as a target for overexpression to further improve lipid production.


2020 ◽  
Author(s):  
Nhung TT Pham ◽  
Maarten Reijnders ◽  
Maria Suarez-Diez ◽  
Bart Nijsse ◽  
Jan Springer ◽  
...  

Abstract Background: Cutaneotrichosporon oleaginosus ATCC 20509 is a fast growing oleaginous basidiomycete yeast that is able to grow in a wide range of low-cost carbon sources including crude glycerol, a byproduct of biodiesel production. When glycerol is used as a carbon source, this yeast can accumulate more than 50% lipids (w/w) with high concentrations of mono-unsaturated fatty acids.Results: To increase our understanding of this yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated genome was used to build a genome-scale, constraint-based metabolic model containing 1553 reactions involving 1373 metabolites in 11 compartments. A new description of the biomass synthesis reaction was introduced to account for massive lipid accumulation in conditions with high carbon to nitrogen (C/N) ratio in the media. This condition-specific biomass objective function is shown to better predict conditions with high lipid accumulation using glucose, fructose, sucrose, xylose, and glycerol as sole carbon source.Conclusion: Contributing to the economic viability of biodiesel as renewable fuel, C. oleaginosus ATCC 20509 can effectively convert crude glycerol waste streams in lipids as a potential bioenergy source. Performance simulations are essential to identify optimal production conditions and to develop and fine tune a cost-effective production process. Our model suggests ATP-citrate lyase as a possible target to further improve lipid production.


2020 ◽  
Author(s):  
Nhung TT Pham ◽  
Maarten Reijnders ◽  
Maria Suarez-Diez ◽  
Bart Nijsse ◽  
Jan Springer ◽  
...  

Abstract Background: Cutaneotrichosporon oleaginosus ATCC 20509 is a fast growing oleaginous basidiomycete yeast that is able to grow in a wide range of low-cost carbon sources including crude glycerol, a byproduct of biodiesel production. When glycerol is used as a carbon source, this yeast can accumulate more than 50% lipids (w/w) with high concentrations of mono-unsaturated fatty acids. Results: To increase our understanding of this yeast and to provide a knowledge base for further industrial use, a FAIR re-annotated genome was used to build a genome-scale, constraint-based metabolic model containing 1553 reactions involving 1373 metabolites in 11 compartments. A new description of the biomass synthesis reaction was introduced to account for massive lipid accumulation in conditions with high carbon to nitrogen (C/N) ratio in the media. This condition-specific biomass objective function is shown to better predict conditions with high lipid accumulation using glucose, fructose, sucrose, xylose and glycerol as sole carbon source. Conclusion: Contributing to the economic viability of biodiesel as renewable fuel, C. oleaginosus ATCC 20509 can effectively convert crude glycerol waste streams in lipids as a potential bioenergy source. Performance simulations are essential to identify optimal production conditions and to develop and fine tune a cost-effective production process. Our model suggests ATP-citrate lyase as a target for further improve lipid production. Keywords: Genome-scale metabolic model; Cutaneotrichosporon oleaginosus ATCC 20509; lipid accumulation; Crude glycerol; biodiesel production; flux balance analysis; oleaginous yeast


2019 ◽  
Author(s):  
Hoang V. Dinh ◽  
Patrick F. Suthers ◽  
Siu Hung Joshua Chan ◽  
Yihui Shen ◽  
Tianxia Xiao ◽  
...  

AbstractBackgroundRhodosporidium toruloidesis a basidiomycetes yeast that can accumulate large amount of lipids and natively produce carotenoids. To better assess this non-model yeast’s metabolic capabilities, we reconstruct a genome-scale model ofR. toruloidesIFO0880’s metabolic network (iRhto1108) using recent functional genomics and phenotypic data in literature or generated herein.ResultsThe modeliRhto1108 accounts for 2,203 reactions, 1,985 metabolites and 1,108 genes. In this work, we integrate and supplement the current knowledge with in-house generated biomass composition and experimental measurements pertaining to the organism’s metabolic capabilities. Phenotype-genotype relationship predictions were improved through manual curation of gene-protein-reaction rules for 543 reactions and validations with gene essentiality data leading to correct recapitulations of 84.5% of gene essentiality data (sensitivity of 94.3% and specificity of 53.8%). Organism-specific macromolecular composition and ATP maintenance requirements were experimentally measured for two separate growth conditions: (i) carbon and (ii) nitrogen limitations. Overall,iRhto1108 reproducedR. toruloides’s utilization capabilities for 18 alternate substrates, matched measured wild-type growth yield, and recapitulated the viability of 772 out of 819 deletion mutants. As a demonstration to the model’s fidelity in guiding engineering interventions, the OptForce procedure was applied oniRhto1108 for the overproduction of triacylglycerol. Suggested interventions recapitulated many of the previously successfully implemented genetic modifications and put forth a few new ones.ConclusioniRhto1108 offers a highly curated model for a non-model yeast supported by multiple layers of experimental data that can be used to inform genetic interventions.


2017 ◽  
Vol 83 (18) ◽  
Author(s):  
Noora Ottman ◽  
Mark Davids ◽  
Maria Suarez-Diez ◽  
Sjef Boeren ◽  
Peter J. Schaap ◽  
...  

ABSTRACT The composition and activity of the microbiota in the human gastrointestinal tract are primarily shaped by nutrients derived from either food or the host. Bacteria colonizing the mucus layer have evolved to use mucin as a carbon and energy source. One of the members of the mucosa-associated microbiota is Akkermansia muciniphila, which is capable of producing an extensive repertoire of mucin-degrading enzymes. To further study the substrate utilization abilities of A. muciniphila, we constructed a genome-scale metabolic model to test amino acid auxotrophy, vitamin biosynthesis, and sugar-degrading capacities. The model-supported predictions were validated by in vitro experiments, which showed A. muciniphila to be able to utilize the mucin-derived monosaccharides fucose, galactose, and N-acetylglucosamine. Growth was also observed on N-acetylgalactosamine, even though the metabolic model did not predict this. The uptake of these sugars, as well as the nonmucin sugar glucose, was enhanced in the presence of mucin, indicating that additional mucin-derived components are needed for optimal growth. An analysis of whole-transcriptome sequencing (RNA-Seq) comparing the gene expression of A. muciniphila grown on mucin with that of the same bacterium grown on glucose confirmed the activity of the genes involved in mucin degradation and revealed most of these to be upregulated in the presence of mucin. The transcriptional response was confirmed by a proteome analysis, altogether revealing a hierarchy in the use of sugars and reflecting the adaptation of A. muciniphila to the mucosal environment. In conclusion, these findings provide molecular insights into the lifestyle of A. muciniphila and further confirm its role as a mucin specialist in the gut. IMPORTANCE Akkermansia muciniphila is among the most abundant mucosal bacteria in humans and in a wide range of other animals. Recently, A. muciniphila has attracted considerable attention because of its capacity to protect against diet-induced obesity in mouse models. However, the physiology of A. muciniphila has not been studied in detail. Hence, we constructed a genome-scale model and describe its validation by transcriptomic and proteomic approaches on bacterial cells grown on mucus and glucose, a nonmucus sugar. The results provide detailed molecular insight into the mucus-degrading lifestyle of A. muciniphila and further confirm the role of this mucin specialist in producing propionate and acetate under conditions of the intestinal tract.


2021 ◽  
Author(s):  
Thordis Kristjansdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Sigmar K. Stefansson ◽  
Elisabet E. Gudmundsdottir ◽  
Snaedis H. Bjornsdottir ◽  
...  

The thermophilic bacterium Rhodothermus marinus has mainly been studied for its thermostable enzymes. More recently, the potential of using the species as a cell factory and in biorefinery platforms has been explored, due to the elevated growth temperature, native production of compounds such as carotenoids and EPSs, the ability to grow on a wide range of carbon sources including polysaccharides, and available genetic tools. A comprehensive understanding of the metabolism of production organisms is crucial. Here, we report a genome-scale metabolic model of R. marinus DSM 4252T. Moreover, the genome of the genetically amenable R. marinus ISCaR-493 was sequenced and the analysis of the core genome indicated that the model could be used for both strains. Bioreactor growth data was obtained, used for constraining the model and the predicted and experimental growth rates were compared. The model correctly predicted the growth rates of both strains. During the reconstruction process, different aspects of the R. marinus metabolism were reviewed and subsequently, both cell densities and carotenoid production were investigated for strain ISCaR-493 under different growth conditions. Additionally, the dxs gene, which was not found in the R. marinus genomes, from Thermus thermophilus was cloned on a shuttle vector into strain ISCaR-493 resulting in a higher yield of carotenoids.


2020 ◽  
Author(s):  
Yuko Arita ◽  
Griffin Kim ◽  
Zhijian Li ◽  
Helena Friesen ◽  
Gina Turco ◽  
...  

AbstractThe ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships, including instances of feedback control. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which 5,687 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains Synthetic Genetic Array (SGA) screening markers and a unique molecular barcode, enabling high-throughput yeast genetics. We characterized YETI using quantitative growth phenotyping and pooled BAR-seq screens, and we used a YETI allele to characterize the regulon of ROF1, showing that it is a transcriptional repressor. We observed that strains with inducible essential genes that have low native expression can often grow without inducer. Analysis of data from other eukaryotic and prokaryotic systems shows that low native expression is a critical variable that can bias promoter-perturbing screens, including CRISPRi. We engineered a second expression system, Z3EB42, that gives lower expression than Z3EV, a feature enabling both conditional activation and repression of lowly expressed essential genes that grow without inducer in the YETI library.


Sign in / Sign up

Export Citation Format

Share Document