scholarly journals Capillary-associated microglia regulate vascular structure and function through PANX1-P2RY12 coupling in mice

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kanchan Bisht ◽  
Kenneth A. Okojie ◽  
Kaushik Sharma ◽  
Dennis H. Lentferink ◽  
Yu-Yo Sun ◽  
...  

AbstractMicroglia are brain-resident immune cells with a repertoire of functions in the brain. However, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, we document interactions between ramified CX3CR1 + myeloid cell somata and brain capillaries. We confirm that these cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then, we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing them with parenchymal microglia (PCMs) in their morphological activities including during microglial depletion and repopulation. Molecularly, we identify P2RY12 receptors as a regulator of CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, microglial elimination triggered capillary dilation, blood flow increase, and impaired vasodilation that were recapitulated in P2RY12−/− and PANX1−/− mice suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.

2021 ◽  
Author(s):  
Kanchan Bisht ◽  
Kenneth A Okojie ◽  
Kaushik P Sharma ◽  
Dennis H Lentferink ◽  
Yu-Yo Sun ◽  
...  

Microglia are brain-resident immune cells with a repertoire of functions in the developing, mature and pathological brain. Their wide-ranging roles in physiology include the clearance of cellular debris, elimination of excess synapses, regulation of neuronal activity and contributions to blood vessel development. Despite these known roles for microglia, the extent of their interactions with the vasculature and potential regulation of vascular physiology has been insufficiently explored. Here, using in vivo acute and longitudinal two-photon imaging in transgenic mice combined with electron microscopy, fixed tissue immunohistochemistry, pharmacological treatments and laser speckle imaging, we document the steady-state interactions between ramified CX3CR1+ myeloid cell somata and capillaries in the brain. We first confirm that these myeloid cells are bona fide microglia by molecular, morphological and ultrastructural approaches. Then we give a detailed spatio-temporal characterization of these capillary-associated microglia (CAMs) comparing and contrasting them with parenchymal microglia (PCMs) in their static, dynamic and chronic morphological activities including during microglial depletion and repopulation. Molecularly, we identify microglial-specific purinergic P2RY12 receptors as a receptor regulating CAM interactions under the control of released purines from pannexin 1 (PANX1) channels. Furthermore, to elucidate roles for microglia in vascular structure and function, we eliminated microglia and showed that this triggered capillary dilation, blood flow increase, and impaired vasodilative responses. We find that P2RY12-/- and PANX1-/- mice recapitulate these vascular impairments suggesting purines released through PANX1 channels play important roles in activating microglial P2RY12 receptors to regulate neurovascular structure and function.


2006 ◽  
Vol 34 (5) ◽  
pp. 863-867 ◽  
Author(s):  
S. Mizielinska ◽  
S. Greenwood ◽  
C.N. Connolly

Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.


2019 ◽  
Vol 116 (37) ◽  
pp. 18445-18454 ◽  
Author(s):  
Alan K. Itakura ◽  
Kher Xing Chan ◽  
Nicky Atkinson ◽  
Leif Pallesen ◽  
Lianyong Wang ◽  
...  

A phase-separated, liquid-like organelle called the pyrenoid mediates CO2fixation in the chloroplasts of nearly all eukaryotic algae. While most algae have 1 pyrenoid per chloroplast, here we describe a mutant in the model algaChlamydomonasthat has on average 10 pyrenoids per chloroplast. Characterization of the mutant leads us to propose a model where multiple pyrenoids are favored by an increase in the surface area of the starch sheath that surrounds and binds to the liquid-like pyrenoid matrix. We find that the mutant’s phenotypes are due to disruption of a gene, which we call StArch Granules Abnormal 1 (SAGA1) because starch sheath granules, or plates, in mutants lacking SAGA1 are more elongated and thinner than those of wild type. SAGA1 contains a starch binding motif, suggesting that it may directly regulate starch sheath morphology. SAGA1 localizes to multiple puncta and streaks in the pyrenoid and physically interacts with the small and large subunits of the carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), a major component of the liquid-like pyrenoid matrix. Our findings suggest a biophysical mechanism by which starch sheath morphology affects pyrenoid number and CO2-concentrating mechanism function, advancing our understanding of the structure and function of this biogeochemically important organelle. More broadly, we propose that the number of phase-separated organelles can be regulated by imposing constraints on their surface area.


1998 ◽  
Vol 15 (1) ◽  
pp. 26-28
Author(s):  
CS Breathnach

AbstractInterest in the psychiatric aspects of old age predated the institution of geriatrics as a clinical discipline, but the systematic study of the ageing brain only began in the second half of this century when an ageing population presented a global numerical challenge to society. In the senescent cerebral cortex, though the number of neurons is not reduced, cell shrinkage results in synaptic impoverishment with consequent cognitive impairment. Recent advances in imaging techniques, combined with burgeoning knowledge of neurobiological structure and function, have increased our understanding of the ageing processes in the human brain and permit an optimistic approach in the application of the newer insights into neuropsychology and geriatric psychiatry.


2010 ◽  
Vol 5 (4) ◽  
pp. 391-400 ◽  
Author(s):  
Denise C. Park ◽  
Chih-Mao Huang

There is clear evidence that sustained experiences may affect both brain structure and function. Thus, it is quite reasonable to posit that sustained exposure to a set of cultural experiences and behavioral practices will affect neural structure and function. The burgeoning field of cultural psychology has often demonstrated the subtle differences in the way individuals process information—differences that appear to be a product of cultural experiences. We review evidence that the collectivistic and individualistic biases of East Asian and Western cultures, respectively, affect neural structure and function. We conclude that there is limited evidence that cultural experiences affect brain structure and considerably more evidence that neural function is affected by culture, particularly activations in ventral visual cortex—areas associated with perceptual processing.


FEBS Letters ◽  
2004 ◽  
Vol 566 (1-3) ◽  
pp. 234-240 ◽  
Author(s):  
José R. Bayascas ◽  
Vı́ctor J. Yuste ◽  
Carme Solé ◽  
Isabel Sánchez-López ◽  
Miquel F. Segura ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


Sign in / Sign up

Export Citation Format

Share Document