The role of GABAA receptor biogenesis, structure and function in epilepsy

2006 ◽  
Vol 34 (5) ◽  
pp. 863-867 ◽  
Author(s):  
S. Mizielinska ◽  
S. Greenwood ◽  
C.N. Connolly

Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.

Cephalalgia ◽  
2018 ◽  
Vol 39 (13) ◽  
pp. 1635-1660 ◽  
Author(s):  
Marta Vila-Pueyo ◽  
Jan Hoffmann ◽  
Marcela Romero-Reyes ◽  
Simon Akerman

Objective To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms of primary headaches, especially migraine.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hannah C. Bennett ◽  
Yongsoo Kim

The pericyte is a perivascular cell type that encapsulates the microvasculature of the brain and spinal cord. Pericytes play a crucial role in the development and maintenance of the blood-brain barrier (BBB) and have a multitude of important functions in the brain. Recent evidence indicates that pericyte impairment has been implicated in neurovascular pathology associated with various human diseases such as diabetes mellitus, Alzheimer’s disease (AD), and stroke. Although the pericyte is essential for normal brain function, knowledge about its developmental trajectory and anatomical distribution is limited. This review article summarizes the scientific community’s current understanding of pericytes’ regional heterogeneity in the brain and their changes during major life stages. More specifically, this review article focuses on pericyte differentiation and migration during brain development, regional population differences in the adult brain, and changes during normal and pathological aging. Most of what is known about pericytes come from studies of the cerebral cortex and hippocampus. Therefore, we highlight the need to expand our understanding of pericyte distribution and function in the whole brain to better delineate this cell type’s role in the normal brain and pathological conditions.


Author(s):  
Bruce R. Ransom

This resource is the long-awaited new revision of the most highly regarded reference volume on glial cells, and has been completely revised, greatly enlarged, and enhanced with full color figures throughout. Neglected in research for years, it is now evident that the brain only functions in a concerted action of all the cells, namely glia and neurons. Seventy one chapters comprehensively discuss virtually every aspect of normal glial cell anatomy, physiology, biochemistry and function, and consider the central roles of these cells in neurological diseases including stroke, Alzheimer disease, multiple sclerosis, Parkinson's disease, neuropathy, and psychiatric conditions. With more than 20 new chapters it addresses the massive growth of knowledge about the basic biology of glia and the sophisticated manner in which they partner with neurons in the course of normal brain function.


1993 ◽  
Vol 10 (1) ◽  
pp. 2-5
Author(s):  
Lesley J. Rogers

AbstractCurrently there is an increase in the number of articles published in scientific journals and in the popular scientific media that claim a biological basis for sex differences in cognition and in certain structures in the brain. It can be argued that there is over-emphasis on the differences rather than similarities between the sexes, but it is even more important to question the assumed causation of the differences. This paper discusses recent evidence for an interactive role of early experience and hormonal condition in determining sex differences in brain structure and function. Although early studies using rats were thought to show that the male sex hormone, testosterone, acts on the brain in early life to direct its differentiation into either the male or female form, it is know known that this result comes about indirectly by changing the mother’s behaviour towards the pups. The hormone does not act on the brain directly but rather it alters the environment in which the young animals are rasied and this, in turn, influences the development of the brain. Indeed, the brain is in dynamic register with its environment both during development and in adulthood. Other examples also show that old ideas of rigid biological determination of brain structure and function need to be laid aside.The hypotheses for hormonal causation of sex differences humans rely heavily, if not exclusively, on the earlier interpretation of the experiments with rats, and there seems to be resistance to changing these notions based on the new discoveries. Apparently, there is strong pressure to cling on to biological determinist theories for sex differences in behaviour, and this has profound effects on social and educational policy. For example, biological determinism has been used to justify under representation of women in certain professions. Realisation of the dramatic effects that environmental stimulation and learning can have on the development of brain and behaviour leads us to an optimistic position for social change towards equality for women.


2020 ◽  
Vol 10 (3) ◽  
pp. 168 ◽  
Author(s):  
Francisco Pestana ◽  
Gabriela Edwards-Faret ◽  
T. Grant Belgard ◽  
Araks Martirosyan ◽  
Matthew G. Holt

Astrocytes are ubiquitous in the central nervous system (CNS). These cells possess thousands of individual processes, which extend out into the neuropil, interacting with neurons, other glia and blood vessels. Paralleling the wide diversity of their interactions, astrocytes have been reported to play key roles in supporting CNS structure, metabolism, blood-brain-barrier formation and control of vascular blood flow, axon guidance, synapse formation and modulation of synaptic transmission. Traditionally, astrocytes have been studied as a homogenous group of cells. However, recent studies have uncovered a surprising degree of heterogeneity in their development and function, in both the healthy and diseased brain. A better understanding of astrocyte heterogeneity is urgently needed to understand normal brain function, as well as the role of astrocytes in response to injury and disease.


2021 ◽  
Vol 25 (4) ◽  
pp. 651-656
Author(s):  
D. S. Sukhan ◽  
H. P. Liudkevych ◽  
І. V. Olkhova ◽  
Y. O. Botanevych ◽  
V. S. Orlenko ◽  
...  

Annotation. Acute disorder of cerebral circulation (ADCC) occupies leading positions in mortality and disability in Ukraine, despite new treatments and modern medical care. Current data suggest that the problem of treatment and rehabilitation of patients after ADCC can be solved with the help of neurotrophins – a family of proteins that regulate the processes of plasticity in the brain. Due to the similarity of their structure, they are able to act as a holistic system, helping to repair damaged areas of the brain. Therefore, the purpose of this review was to collect information on the structure and function of neurotrophins BDNF, NGF, NT-3 and NT-4, their role in neuroplasticity after stroke in order to develop modern methods of influencing them for further implementation in practice. For this purpose, 50 sources from the main databases (Elsevier, Pubmed, Web of Science, Google Scholar) were used. The systematic review describes the structure of neurotrophins and their function, mechanisms of neuroplasticity and methods of influencing it, in particular exercise and diet. Since these methods have a general therapeutic effect and require a long time for its onset, the prospects for further development are the creation of drugs targeted to the neurotrophin system for effective rehabilitation of patients after stroke.


2016 ◽  
Vol 116 (5) ◽  
pp. 2093-2104 ◽  
Author(s):  
Christopher M. Filley ◽  
R. Douglas Fields

Whereas the cerebral cortex has long been regarded by neuroscientists as the major locus of cognitive function, the white matter of the brain is increasingly recognized as equally critical for cognition. White matter comprises half of the brain, has expanded more than gray matter in evolution, and forms an indispensable component of distributed neural networks that subserve neurobehavioral operations. White matter tracts mediate the essential connectivity by which human behavior is organized, working in concert with gray matter to enable the extraordinary repertoire of human cognitive capacities. In this review, we present evidence from behavioral neurology that white matter lesions regularly disturb cognition, consider the role of white matter in the physiology of distributed neural networks, develop the hypothesis that white matter dysfunction is relevant to neurodegenerative disorders, including Alzheimer's disease and the newly described entity chronic traumatic encephalopathy, and discuss emerging concepts regarding the prevention and treatment of cognitive dysfunction associated with white matter disorders. Investigation of the role of white matter in cognition has yielded many valuable insights and promises to expand understanding of normal brain structure and function, improve the treatment of many neurobehavioral disorders, and disclose new opportunities for research on many challenging problems facing medicine and society.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2020 ◽  
Vol 118 (3) ◽  
pp. 258a
Author(s):  
Laszlo Csernoch ◽  
Mónika Gönczi ◽  
Zsolt Ráduly ◽  
László Szabó ◽  
Nóra Dobrosi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document