human caspase
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 16)

H-INDEX

27
(FIVE YEARS 2)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Hridindu Roychowdury ◽  
Philip A. Romero

AbstractThe human caspase family comprises 12 cysteine proteases that are centrally involved in cell death and inflammation responses. The members of this family have conserved sequences and structures, highly similar enzymatic activities and substrate preferences, and overlapping physiological roles. In this paper, we present a deep mutational scan of the executioner caspases CASP3 and CASP7 to dissect differences in their structure, function, and regulation. Our approach leverages high-throughput microfluidic screening to analyze hundreds of thousands of caspase variants in tightly controlled in vitro reactions. The resulting data provides a large-scale and unbiased view of the impact of amino acid substitutions on the proteolytic activity of CASP3 and CASP7. We use this data to pinpoint key functional differences between CASP3 and CASP7, including a secondary internal cleavage site, CASP7 Q196 that is not present in CASP3. Our results will open avenues for inquiry in caspase function and regulation that could potentially inform the development of future caspase-specific therapeutics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Debabrata Chowdhury ◽  
Jason C. Gardner ◽  
Abhijit Satpati ◽  
Suba Nookala ◽  
Santhosh Mukundan ◽  
...  

Non-canonical inflammasome activation by mouse caspase-11 (or human CASPASE-4/5) is crucial for the clearance of certain gram-negative bacterial infections, but can lead to severe inflammatory damage. Factors that promote non-canonical inflammasome activation are well recognized, but less is known about the mechanisms underlying its negative regulation. Herein, we identify that the caspase-11 inflammasome in mouse and human macrophages (Mϕ) is negatively controlled by the zinc (Zn2+) regulating protein, metallothionein 3 (MT3). Upon challenge with intracellular lipopolysaccharide (iLPS), Mϕ increased MT3 expression that curtailed the activation of caspase-11 and its downstream targets caspase-1 and interleukin (IL)-1β. Mechanistically, MT3 increased intramacrophage Zn2+ to downmodulate the TRIF-IRF3-STAT1 axis that is prerequisite for caspase-11 effector function. In vivo, MT3 suppressed activation of the caspase-11 inflammasome, while caspase-11 and MT3 synergized in impairing antibacterial immunity. The present study identifies an important yin-yang relationship between the non-canonical inflammasome and MT3 in controlling inflammation and immunity to gram-negative bacteria.


2021 ◽  
Vol 6 (62) ◽  
pp. eabh3567
Author(s):  
Pascal Devant ◽  
Anh Cao ◽  
Jonathan C. Kagan

Innate immune signaling pathways comprise multiple proteins that promote inflammation. This multistep means of information transfer suggests that complexity is a prerequisite for pathway design. Here, we test this hypothesis by studying caspases that regulate inflammasome-dependent inflammation. Several caspases differ in their ability to recognize bacterial lipopolysaccharide (LPS) and cleave interleukin-1β (IL-1β). No caspase is known to contain both activities, yet distinct caspases with complementary activities bookend an LPS-induced pathway to IL-1β cleavage. Using caspase-1/4 hybrid proteins present in canines as a guide, we identified molecular determinants of IL-1β cleavage specificity within human and murine caspase-1. This knowledge enabled the redesign of human caspase-4 to operate as a one-protein signaling pathway, which intrinsically links LPS detection to IL-1β cleavage and release, independent of inflammasomes. We identified caspase-4 homologs in multiple carnivorans that display the activities of redesigned human caspase-4. These findings illustrate natural signaling pathway diversity and highlight how multistep innate immune pathways can be condensed into a single protein.


2021 ◽  
Author(s):  
Debabrata Chowdhury ◽  
Jason Gardner ◽  
Abhijit Satpati ◽  
Suba Nookala ◽  
Santhosh Mukundan ◽  
...  

Non-canonical inflammasome activation by mouse caspase-11 (or human CASPASE-4/5) is crucial for the clearance of certain gram-negative bacterial infections, but can lead to severe inflammatory damage. Factors that promote non-canonical inflammasome activation are well recognized, but less is known about the mechanisms underlying its negative regulation. Herein, we identify that the caspase-11 inflammasome in mouse and human macrophages (Mϕ) is negatively controlled by the zinc (Zn2+) regulating protein, metallothionein 3 (MT3). Upon challenge with intracellular lipopolysaccharide (iLPS), Mϕ increased MT3 expression that curtailed the activation of caspase-11 and its downstream targets caspase-1 and interleukin (IL)-1β. Mechanistically, MT3 increased intramacrophage Zn2+ to downmodulate the TRIF-IRF3-STAT1 axis that is prerequisite for caspase-11 effector function. MT3 suppressed activation of the caspase-11 inflammasome, while caspase-11 and MT3 synergized in impairing antibacterial immunity. The present study identifies an important yin-yang relationship between the non-canonical inflammasome and MT3 in controlling inflammation and immunity to gram-negative bacteria.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marta Valenti ◽  
María Molina ◽  
Víctor J. Cid

Caspases are a family of cysteine proteases that play an essential role in inflammation, apoptosis, cell death, and development. Here we delve into the effects caused by heterologous expression of human caspase-1 in the yeast Saccharomyces cerevisiae and compare them to those of caspase-8. Overexpression of both caspases in the heterologous model led to their activation and caused mitochondrial hyperpolarization, damage to different organelles, and cell death. All these effects were dependent on their protease activity, and caspase-8 was more aggressive than caspase-1. Growth arrest could be at least partially explained by dysfunction of the actin cytoskeleton as a consequence of the processing of the yeast Bni1 formin, which we identify here as a likely direct substrate of both caspases. Through the modulation of the GAL1 promoter by using different galactose:glucose ratios in the culture medium, we have established a scenario in which caspase-1 is sufficiently expressed to become activated while yeast growth is not impaired. Finally, we used the yeast model to explore the role of death-fold domains (DD) of both caspases in their activity. Peculiarly, the DDs of either caspase showed an opposite involvement in its intrinsic activity, as the deletion of the caspase activation and recruitment domain (CARD) of caspase-1 enhanced its activity, whereas the deletion of the death effector domain (DED) of caspase-8 diminished it. We show that caspase-1 is able to efficiently process its target gasdermin D (GSDMD) when co-expressed in yeast. In sum, we propose that S. cerevisiae provides a manageable tool to explore caspase-1 activity and structure–function relationships.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongjun Ba ◽  
Huimin Peng ◽  
Liangping Cheng ◽  
Yuese Lin ◽  
Xuandi Li ◽  
...  

Talaromyces marneffei (TM) infection is rarely seen in clinical practice, and its pathogenesis may be related to deficiency in antifungal immune function. Human caspase recruitment domain-containing protein 9 (CARD9) is a key molecule in fungal immune surveillance. There have been no previous case reports of TM infection in individuals with CARD9 gene mutations. Herein, we report the case of a 7-month-old Chinese boy who was admitted to our hospital with recurring cough and fever with a papular rash. A blood culture produced TM growth, which was confirmed by metagenomic next-generation sequencing. One of the patient’s sisters had died of TM septicaemia at 9 months of age. Whole exome sequencing revealed that the patient had a complex heterozygous CARD9 gene mutation with a c.1118G>C p.R373P variation in exon 8 and a c.610C>T p.R204C variation in exon 4. Based on the culture results, voriconazole antifungal therapy was administered. On the third day of antifungal administration, his temperature dropped to within normal range, the rash gradually subsided, and the enlargement of his lymph nodes, liver, and spleen improved. Two months after discharge, he returned to the hospital for a follow-up examination. His general condition was good, and no specific abnormalities were detected. Oral voriconazole treatment was continued. Unexplained TM infection in HIV-negative individuals warrants investigation for immune deficiencies.


2021 ◽  
Author(s):  
Hridindu Roychowdhury ◽  
Philip A Romero

The human caspase family comprises 12 cysteine proteases that are centrally involved in cell death and inflammation responses. The members of this family have conserved sequences and structures, highly similar enzymatic activities and substrate preferences, and overlapping physiological roles. In this paper, we present a deep mutational scan of the executioner caspases CASP3 and CASP7 to dissect differences in their structure, function, and regulation. Our approach leverages high-throughput microfluidic screening to analyze hundreds of thousands of caspase variants in tightly controlled in vitro reactions. The resulting data provides a large-scale and unbiased view of the impact of amino acid substitutions on the proteolytic activity of CASP3 and CASP7. We use this data to pinpoint key functional differences between CASP3 and CASP7, including a secondary internal cleavage site, CASP7 Q196 that is not present in CASP3. Our results will open avenues for inquiry in caspase function and regulation that could potentially inform the development of future caspase-specific therapeutics.


2021 ◽  
pp. 1-9
Author(s):  
Young-Su Yi

Inflammasomes are intracellular protein complexes consisting of the pattern recognition receptors and inflammatory molecules in the inflamed cells. In response to various ligands, inflammasomes play a pivotal role to execute the inflammatory responses by inducing the pyroptosis and the secretion of pro-inflammatory cytokines, interleukin (IL)-1β, and IL-18. Unlike canonical inflammasomes, including NOD-like receptor family inflammasomes, such as NLRP1, NLRP3, NLRC4, and absence in melanoma 2 inflammasomes, noncanonical inflammasomes, such as mouse caspase-11 and human caspase-4/5 were recently discovered, and their roles in the inflammatory responses have been poorly understood. However, emerging studies have been successfully demonstrating the regulatory roles of these noncanonical inflammasomes on inflammatory responses and the pathogenesis of inflammatory/autoimmune diseases. This review summarizes and discusses the recent studies investigating the regulatory roles of the caspase-11 noncanonical inflammasome in neuroinflammation and the pathogenesis of multiple sclerosis (MS), which provides the insight for the validation of caspase-11 noncanonical inflammasome to develop novel and promising therapeutics for MS.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengtao Qian ◽  
Yilin Zhao ◽  
Chuandan Wan ◽  
Yimai Deng ◽  
Yaoyao Zhuang ◽  
...  

Pyroptosis, a newly discovered form of programmed cell death, is characterized by cell swelling, the protrusion of large bubbles from the plasma membrane and cell lysis. This death pathway is mediated by the pore formation of gasdermin D (GSDMD), which is activated by human caspase-1/caspase-4/caspase-5 (or mouse caspase-1/caspase11), and followed with the releasing of both cell contents and proinflammatory cytokines. Pyroptosis was initially found to function as an innate immune effector mechanism to facilitate host defense against pathogenic microorganisms, and subsequent studies revealed that pyroptosis also plays an eventful role in inflammatory immune diseases and tumor resistance. Recent studies have also shown that pyroptosis is involved in the initiation, the progression and complications of atherosclerosis. Here, we provide an overview of the role of pyroptosis in atherosclerosis by focusing on three important participating cells: ECs, macrophages, and SMCs. In addition, we also summarized drugs and stimuli that regulate the progression of atherosclerosis by influencing cell pyroptosis.


Sign in / Sign up

Export Citation Format

Share Document