scholarly journals Magnetic-field-controlled spin fluctuations and quantum critically in Sr3Ru2O7

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. Lester ◽  
S. Ramos ◽  
R. S. Perry ◽  
T. P. Croft ◽  
M. Laver ◽  
...  

AbstractWhen the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality with magnetic field at low temperature. Near its critical field Bc it displays the hallmark T-linear resistivity and a $$T\,{{{{{{\mathrm{log}}}}}}}\,(1/T)$$ T log ( 1 / T ) electronic heat capacity behaviour of strange metals. However, these behaviours have not been related to any critical fluctuations. Here we use inelastic neutron scattering to reveal the presence of collective spin fluctuations whose relaxation time and strength show a nearly singular variation with magnetic field as Bc is approached. The large increase in the electronic heat capacity and entropy near Bc can be understood quantitatively in terms of the scattering of conduction electrons by these spin-fluctuations. On entering the spin-density-wave ordered phase present near Bc, the fluctuations become stronger suggesting that the order is stabilised through an “order-by-disorder” mechanism.

2017 ◽  
Vol 31 (08) ◽  
pp. 1750053 ◽  
Author(s):  
Mohsen Yarmohammadi ◽  
Houshang Araghi Kazzaz ◽  
Mohammad Saeed Feali

In this paper, the effect of dilute charged impurity and external magnetic field on orbital-resolved density of states (DOS) and electronic heat capacity (EHC) of a monolayer hydrogenated graphene which is called chair-like graphane is investigated within the Harrison model and Green’s function technique. The self-consistent Born approximation has been implemented to describe the effect of scattering between electrons and dilute charged impurities. Our results show that the graphane is a semiconductor and its band gap decreases with impurity and magnetic field. EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity and magnetic field. Generally, EHC increases with the mentioned parameters. Surprisingly, impurity doping only affects the salient behavior of [Formula: see text] orbital contribution of carbon atoms due to the symmetry breaking.


1995 ◽  
Vol 52 (22) ◽  
pp. 15983-15991 ◽  
Author(s):  
J. L. Musfeldt ◽  
M. Poirier ◽  
P. Batail ◽  
C. Lenoir

1993 ◽  
Vol 07 (19) ◽  
pp. 3415-3421 ◽  
Author(s):  
ALEXANDRE S. ROZHAVSKY

A field description of spin-density-wave (SDW) in a quasi-two-dimensional metal with open Fermi surface in magnetic field, is proposed. The SDW transition temperature, T c (H), and the Hall conductivity σxy, are calculated. The dependence T c (H) is found to be different from that of the Bardeen-Cooper-Schrieffer model, in particular, a threshold field, H c , found its natural explanation. It is proved that the quantized Hall conductivity arises from the chiral anomaly terms in the effective action provided there is pinning of chemical potential in the gap of extended states.


2002 ◽  
Vol 12 (9) ◽  
pp. 389-389
Author(s):  
W. G. Clark ◽  
F. Zamborsky ◽  
B. Alavi ◽  
P. Vonlanthen ◽  
W. Moulton ◽  
...  

We report proton NMR measurements of the effect of very high magnetic fields up to 44.7 T (1.9 GHz) on the spin density wave (SDW) transition of the organic conductor TMTSF2PF6. Up to 1.8 GHz, no effect of critical slowing close to the transition is seen on the proton relaxation rate (1/T1), which is determined by the SDW fluctuations associated with the phase transition at the NMR frequency. Thus, the correlation time for such fluctuations is less than $1O^{-10}$s. A possible explanation for the absence of longer correlation times is that the transition is weakly first order, so that the full critical divergence is never achieved. The measurements also show a dependence of the transition temperature on the orientation of the magnetic field and a quadratic dependence on its magnitude that agrees with earlier transport measurements at lower fields. The UCLA part of this work was supported by NSF Grant DMR-0072524.


Sign in / Sign up

Export Citation Format

Share Document