electronic heat
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 27)

H-INDEX

21
(FIVE YEARS 3)

Nano Letters ◽  
2022 ◽  
Author(s):  
Danial Majidi ◽  
Martin Josefsson ◽  
Mukesh Kumar ◽  
Martin Leijnse ◽  
Lars Samuelson ◽  
...  

Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Yuki Matsumura ◽  
Shusaku Imajo ◽  
Satoshi Yamashita ◽  
Hiroki Akutsu ◽  
Yasuhiro Nakazawa

Thermodynamic investigation by calorimetric measurements of the layered organic superconductors, κ-(BEDT-TTF)2Cu[N(CN)2]Br and its partially deuterated compounds of κ-(d[2,2]-BEDT-TTF)2Cu[N(CN)2]Br and κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br, performed in a wide temperature range is reported. The latter two compounds were located near the metal–insulator boundary in the dimer-Mott phase diagram. From the comparison of the temperature dependences of their heat capacities, we indicated that lattice heat capacities of the partially deuterated compounds were larger than that of the pristine compound below about 40 K. This feature probably related to the lattice softening was discussed also by the sound velocity measurement, in which the dip-like structures of the Δv/v were observed. We also discussed the variation of the electronic heat capacity under magnetic fields. From the heat capacity data at magnetic fields up to 6 T, we evaluated that the normal-state γ value of the partially deuterated compound, κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br, was about 3.1 mJ K−2 mol−1. Under the magnetic fields higher than 3.0 T, we observed that the magnetic-field insulating state was induced due to the instability of the mid-gap electronic state peculiar for the two-dimensional dimer-Mott system. Even though the volume fraction was much reduced, the heat capacity of κ-(d[3,3]-BEDT-TTF)2Cu[N(CN)2]Br showed a small hump structure probably related to the strong coupling feature of the superconductivity near the boundary.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Giacomo Mazza ◽  
Marco Gandolfi ◽  
Massimo Capone ◽  
Francesco Banfi ◽  
Claudio Giannetti

AbstractUnderstanding the mechanism of heat transfer in nanoscale devices remains one of the greatest intellectual challenges in the field of thermal dynamics, by far the most relevant under an applicative standpoint. When thermal dynamics is confined to the nanoscale, the characteristic timescales become ultrafast, engendering the failure of the common description of energy propagation and paving the way to unconventional phenomena such as wave-like temperature propagation. Here, we explore layered strongly correlated materials as a platform to identify and control unconventional electronic heat transfer phenomena. We demonstrate that these systems can be tailored to sustain a wide spectrum of electronic heat transport regimes, ranging from ballistic, to hydrodynamic all the way to diffusive. Within the hydrodynamic regime, wave-like temperature oscillations are predicted up to room temperature. The interaction strength can be exploited as a knob to control the dynamics of temperature waves as well as the onset of different thermal transport regimes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. Lester ◽  
S. Ramos ◽  
R. S. Perry ◽  
T. P. Croft ◽  
M. Laver ◽  
...  

AbstractWhen the transition temperature of a continuous phase transition is tuned to absolute zero, new ordered phases and physical behaviour emerge in the vicinity of the resulting quantum critical point. Sr3Ru2O7 can be tuned through quantum criticality with magnetic field at low temperature. Near its critical field Bc it displays the hallmark T-linear resistivity and a $$T\,{{{{{{\mathrm{log}}}}}}}\,(1/T)$$ T log ( 1 / T ) electronic heat capacity behaviour of strange metals. However, these behaviours have not been related to any critical fluctuations. Here we use inelastic neutron scattering to reveal the presence of collective spin fluctuations whose relaxation time and strength show a nearly singular variation with magnetic field as Bc is approached. The large increase in the electronic heat capacity and entropy near Bc can be understood quantitatively in terms of the scattering of conduction electrons by these spin-fluctuations. On entering the spin-density-wave ordered phase present near Bc, the fluctuations become stronger suggesting that the order is stabilised through an “order-by-disorder” mechanism.


Author(s):  
Alexander Block ◽  
Alessandro Principi ◽  
Niels C. H. Hesp ◽  
Aron W. Cummings ◽  
Matz Liebel ◽  
...  

AbstractConducting materials typically exhibit either diffusive or ballistic charge transport. When electron–electron interactions dominate, a hydrodynamic regime with viscous charge flow emerges1–13. More stringent conditions eventually yield a quantum-critical Dirac-fluid regime, where electronic heat can flow more efficiently than charge14–22. However, observing and controlling the flow of electronic heat in the hydrodynamic regime at room temperature has so far remained elusive. Here we observe heat transport in graphene in the diffusive and hydrodynamic regimes, and report a controllable transition to the Dirac-fluid regime at room temperature, using carrier temperature and carrier density as control knobs. We introduce the technique of spatiotemporal thermoelectric microscopy with femtosecond temporal and nanometre spatial resolution, which allows for tracking electronic heat spreading. In the diffusive regime, we find a thermal diffusivity of roughly 2,000 cm2 s−1, consistent with charge transport. Moreover, within the hydrodynamic time window before momentum relaxation, we observe heat spreading corresponding to a giant diffusivity up to 70,000 cm2 s−1, indicative of a Dirac fluid. Our results offer the possibility of further exploration of these interesting physical phenomena and their potential applications in nanoscale thermal management.


Nano Letters ◽  
2021 ◽  
Author(s):  
Mohammed Ali Aamir ◽  
John N. Moore ◽  
Xiaobo Lu ◽  
Paul Seifert ◽  
Dirk Englund ◽  
...  

2021 ◽  
Vol 1120 (1) ◽  
pp. 012033
Author(s):  
Nitin P Singh ◽  
Preetam Singh Gour ◽  
Sapan Mohan Saini

Author(s):  
Vad.I. Surikov ◽  
◽  
Val.I. Surikov ◽  
Y.V. Kuznetsova ◽  
N.A. Semenyuk ◽  
...  

The paper presents the results of a study of the temperature dependence of molar heat capacity at constant pressure in the range (from 5 to 300 K) for vanadium-based materials. For all the studied materials, the values of the density of States near the Fermi level are calculated. It was found that for V3Si and V3Ge materials, the values of the state density μ( E ) correlate with the transition temperatures to the superconducting state. For materials V2O3 and V1.973Me0.027O3 (Me - Al, Fe, Cr), it was found that the temperatures of metal-dielectric phase transitions decrease with increasing values of the density of States.


Sign in / Sign up

Export Citation Format

Share Document