scholarly journals A reasonable approach for the generation of hollow icosahedral kernels in metal nanoclusters

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xi Kang ◽  
Xiao Wei ◽  
Xiaokang Liu ◽  
Sicong Wang ◽  
Tao Yao ◽  
...  

AbstractAlthough the hollow icosahedral M12 kernel has been extensively observed in metal nanoclusters, its origin remains a mystery. Here we report a reasonable avenue for the generation of the hollow icosahedron: the kernel collapse from several small nano-building blocks to an integrated hollow icosahedron. On the basis of the Au alloying processes from Ag28Cu12(SR)24 to the template-maintained AuxAg28-xCu12(SR)24 and then to the template-transformed Au12CuyAg32-y(SR)30, the kernel evolution/collapse from “tetrahedral Ag4 + 4∗Ag3” to “tetrahedral Au4 + 4∗M3 (M = Au/Ag)” and then to “hollow icosahedral Au12” is mapped out. Significantly, the “kernel collapse” from small-sized nano-building blocks to large-sized nanostructures not only unveils the formation of hollow icosahedral M12 in this work, but also might be a very common approach in constructing metallic kernels of nanoclusters and nanoparticles (not limited to the M12 structure).

Nanoscale ◽  
2020 ◽  
Vol 12 (34) ◽  
pp. 17780-17785
Author(s):  
Hao Zhang ◽  
Xiaoying Guo ◽  
Xun Wang

The ability to conduct the self-assembly of nanometer-scale building blocks is the core issue in achieving “bottom-up” fabrications of desired superstructures.


2005 ◽  
Vol 35 (1-2) ◽  
pp. 35-41 ◽  
Author(s):  
Yuan Wang ◽  
Junling Zhang ◽  
Xiaodong Wang ◽  
Jiawen Ren ◽  
Bojun Zuo ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (41) ◽  
pp. 19158-19165 ◽  
Author(s):  
Xiangsha Du ◽  
Jinsong Chai ◽  
Sha Yang ◽  
Yingwei Li ◽  
Tatsuya Higaki ◽  
...  

This mini-Review summarizes the fusion growth patterns of metal nanoclusters based upon M4, M13 and M14 building blocks.


2020 ◽  
Vol 27 (1) ◽  
pp. 30-38
Author(s):  
Sara Bonacchi ◽  
Sabrina Antonello ◽  
Tiziano Dainese ◽  
Flavio Maran

1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
W.M. Stobbs

I do not have access to the abstracts of the first meeting of EMSA but at this, the 50th Anniversary meeting of the Electron Microscopy Society of America, I have an excuse to consider the historical origins of the approaches we take to the use of electron microscopy for the characterisation of materials. I have myself been actively involved in the use of TEM for the characterisation of heterogeneities for little more than half of that period. My own view is that it was between the 3rd International Meeting at London, and the 1956 Stockholm meeting, the first of the European series , that the foundations of the approaches we now take to the characterisation of a material using the TEM were laid down. (This was 10 years before I took dynamical theory to be etched in stone.) It was at the 1956 meeting that Menter showed lattice resolution images of sodium faujasite and Hirsch, Home and Whelan showed images of dislocations in the XlVth session on “metallography and other industrial applications”. I have always incidentally been delighted by the way the latter authors misinterpreted astonishingly clear thickness fringes in a beaten (”) foil of Al as being contrast due to “large strains”, an error which they corrected with admirable rapidity as the theory developed. At the London meeting the research described covered a broad range of approaches, including many that are only now being rediscovered as worth further effort: however such is the power of “the image” to persuade that the above two papers set trends which influence, perhaps too strongly, the approaches we take now. Menter was clear that the way the planes in his image tended to be curved was associated with the imaging conditions rather than with lattice strains, and yet it now seems to be common practice to assume that the dots in an “atomic resolution image” can faithfully represent the variations in atomic spacing at a localised defect. Even when the more reasonable approach is taken of matching the image details with a computed simulation for an assumed model, the non-uniqueness of the interpreted fit seems to be rather rarely appreciated. Hirsch et al., on the other hand, made a point of using their images to get numerical data on characteristics of the specimen they examined, such as its dislocation density, which would not be expected to be influenced by uncertainties in the contrast. Nonetheless the trends were set with microscope manufacturers producing higher and higher resolution microscopes, while the blind faith of the users in the image produced as being a near directly interpretable representation of reality seems to have increased rather than been generally questioned. But if we want to test structural models we need numbers and it is the analogue to digital conversion of the information in the image which is required.


Author(s):  
Yeshayahu Talmon

To achieve complete microstructural characterization of self-aggregating systems, one needs direct images in addition to quantitative information from non-imaging, e.g., scattering or Theological measurements, techniques. Cryo-TEM enables us to image fluid microstructures at better than one nanometer resolution, with minimal specimen preparation artifacts. Direct images are used to determine the “building blocks” of the fluid microstructure; these are used to build reliable physical models with which quantitative information from techniques such as small-angle x-ray or neutron scattering can be analyzed.To prepare vitrified specimens of microstructured fluids, we have developed the Controlled Environment Vitrification System (CEVS), that enables us to prepare samples under controlled temperature and humidity conditions, thus minimizing microstructural rearrangement due to volatile evaporation or temperature changes. The CEVS may be used to trigger on-the-grid processes to induce formation of new phases, or to study intermediate, transient structures during change of phase (“time-resolved cryo-TEM”). Recently we have developed a new CEVS, where temperature and humidity are controlled by continuous flow of a mixture of humidified and dry air streams.


Sign in / Sign up

Export Citation Format

Share Document