scholarly journals Crosstalk between CST and RPA regulates RAD51 activity during replication stress

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai-Hang Lei ◽  
Han-Lin Yang ◽  
Hao-Yen Chang ◽  
Hsin-Yi Yeh ◽  
Dinh Duc Nguyen ◽  
...  

AbstractReplication stress causes replication fork stalling, resulting in an accumulation of single-stranded DNA (ssDNA). Replication protein A (RPA) and CTC1-STN1-TEN1 (CST) complex bind ssDNA and are found at stalled forks, where they regulate RAD51 recruitment and foci formation in vivo. Here, we investigate crosstalk between RPA, CST, and RAD51. We show that CST and RPA localize in close proximity in cells. Although CST stably binds to ssDNA with a high affinity at low ionic strength, the interaction becomes more dynamic and enables facilitated dissociation at high ionic strength. CST can coexist with RPA on the same ssDNA and target RAD51 to RPA-coated ssDNA. Notably, whereas RPA-coated ssDNA inhibits RAD51 activity, RAD51 can assemble a functional filament and exhibit strand-exchange activity on CST-coated ssDNA at high ionic strength. Our findings provide mechanistic insights into how CST targets and tethers RAD51 to RPA-coated ssDNA in response to replication stress.

2012 ◽  
Vol 33 (3) ◽  
pp. 571-581 ◽  
Author(s):  
Guoqi Liu ◽  
Xiaomi Chen ◽  
Michael Leffak

ABSTRACT(CTG)n· (CAG)ntrinucleotide repeat (TNR) expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene causes myotonic dystrophy type 1. However, a direct link between TNR instability, the formation of noncanonical (CTG)n· (CAG)nstructures, and replication stress has not been demonstrated. In a human cell model, we found that (CTG)45· (CAG)45causes local replication fork stalling, DNA hairpin formation, and TNR instability. Oligodeoxynucleotides (ODNs) complementary to the (CTG)45· (CAG)45lagging-strand template eliminated DNA hairpin formation on leading- and lagging-strand templates and relieved fork stalling. Prolonged cell culture, emetine inhibition of lagging-strand synthesis, or slowing of DNA synthesis by low-dose aphidicolin induced (CTG)45· (CAG)45expansions and contractions. ODNs targeting the lagging-strand template blocked the time-dependent or emetine-induced instability but did not eliminate aphidicolin-induced instability. These results show directly that TNR replication stalling, replication stress, hairpin formation, and instability are mechanistically linkedin vivo.


1985 ◽  
Vol 100 (1) ◽  
pp. 282-291 ◽  
Author(s):  
S Ishiwata ◽  
T Funatsu

We examined whether or not purified actin binds to the ends of thin filaments in rabbit skeletal myofibrils. Phase-contrast, fluorescence, and electron microscopic observations revealed that actin does not bind to the ends of thin filaments of intact myofibrils. However, in I-Z-I brushes prepared by dissolving thick filaments at high ionic strength, marked binding of actin to the free ends, i.e., the pointed ends, of thin filaments was observed when actin was added at an early phase of polymerization. As the polymerization of actin proceeded, the binding efficiency decreased. The critical actin concentration for this binding was higher than that for polymerization in solution. The binding of G-actin was not observed at low ionic strength. On the basis of these results, we suggest that a particular structure suppressing the binding of actin is present at the free ends of thin filaments in intact myofibrils and that a part of the end structure population is eliminated or modified at high ionic strength so that further binding of actin becomes possible. The myofibril and I-Z-I brush appear to be useful systems for studies aimed at elucidating the organizational mechanisms of actin filaments in vivo.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Léa Marie ◽  
Lorraine S. Symington

AbstractReplication stress and abundant repetitive sequences have emerged as primary conditions underlying genomic instability in eukaryotes. To gain insight into the mechanism of recombination between repeated sequences in the context of replication stress, we used a prokaryotic Tus/Ter barrier designed to induce transient replication fork stalling near inverted repeats in the budding yeast genome. Our study reveals that the replication fork block stimulates a unique recombination pathway dependent on Rad51 strand invasion and Rad52-Rad59 strand annealing activities, Mph1/Rad5 fork remodelers, Mre11/Exo1/Dna2 resection machineries, Rad1-Rad10 nuclease and DNA polymerase δ. Furthermore, we show recombination at stalled replication forks is limited by the Srs2 helicase and Mus81-Mms4/Yen1 nucleases. Physical analysis of the replication-associated recombinants revealed that half are associated with an inversion of sequence between the repeats. Based on our extensive genetic characterization, we propose a model for recombination of closely linked repeats that can robustly generate chromosome rearrangements.


2006 ◽  
Vol 25 (11) ◽  
pp. 2596-2604 ◽  
Author(s):  
Christophe Possoz ◽  
Sergio R Filipe ◽  
Ian Grainge ◽  
David J Sherratt

1974 ◽  
Vol 15 (1) ◽  
pp. 113-129
Author(s):  
H. HINSSEN ◽  
J. D'HAESE

Myosin was isolated and purified from plasmodia of the slime mould Physarum polycephalum by a new method. This method is based on actomyosin extraction at low ionic strength after extensive washing, followed by the selective precipitation of myosin at pH 6.1 under relaxing conditions. The yield of myosin was 3-5 times higher than reported for other methods. In contrast to earlier studies a remarkably strong tendency to filament formation was found for slime mould myosin, probably due to a better preservation of some structural properties during preparation. Conditions were worked out under which numerous filaments up to 4 µm in length can be produced. It was established that not only a gradual decrease of ionic strength may influence filament formation, but also pH, ATP concentration and the presence of divalent cations. Compared to the current filament models a difference exists in the structure of the filaments. No central bare zone can be found, and thus, they lack an apparent bipolarity. Along the entire filament there are lateral projections representing the head portion of myosin molecules. A clear periodicity with an axial repeat of about 14 nm was observed, indicating a highly ordered arrangement of these projections. In this paper it is shown for the first time that myosin from one of the primitive motile systems is able to form aggregates of high structural order, indicating that the contraction of non-muscular actomyosin systems is not necessarily effected with oligomeric or randomly aggregated myosin. The possible role of myosin aggregation in vivo and the similarity of filament structure to that recently reported for myosin from vertebrate smooth muscle and striated muscle are discussed.


1981 ◽  
Author(s):  
R Jordan ◽  
T Zuffi ◽  
M Fournel ◽  
D Schroeder

The tight binding affinity of antithrombin for heparin makes possible a relatively selective purification scheme based on salt elution from heparin-Sepharose. We have found, however, that purity can often be greatly increased if the elution is carried out with soluble heparin instead. This heparin can be removed from the antithrombin, either in whole or part, by a second affinity step on Concanavalin A Sepharose. The antithrombin, which binds to the matrix through its glycosidic moieties, retains its ability to bind heparin at physiological ionic strengths. Thus, the complex of antithrombin and heparin is readily isolated free of unbound heparin species. The complex can be eluted intact with low ionic strength buffers containing sugars which compete for binding to the lectin. Alternatively, the high activity heparin (400–500 units/mg) can be obtained separately by a 1 M NaCl wash which is then followed by a carbohydrate wash to obtain the purified antithrombin.We have made certain preliminary biochemical and anticoagulant characterizations of these materials. Not unexpectedly, both the high activity heparin and its complex with antithrombin show significantly greater in vitro potency in comparison to unfractionated heparin. In vivo anticoagulant efficacy, as evaluated in a rabbit infusion model, confirmed the in vitro findings and further suggests some potential therapeutic benefit may be derived from infusion of a preformed heparin-antithrombin complex.


1977 ◽  
Vol 74 (2) ◽  
pp. 414-427 ◽  
Author(s):  
J Kruppa ◽  
DD Sabatini

Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.


1982 ◽  
Vol 205 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Enrico Grazi ◽  
Ermes Magri ◽  
Ivonne Pasquali-Ronchetti

When protamine is added to actin, different supramolecular structures are formed depending on the molar ratio of the two proteins and of the ionic strength of the medium. At low ionic strength, and going from a molar ratio of protamine to G-actin of 4:1, 2:1 and 1:1, globular aggregates are first converted into extended structures and then to long threads in which the constituent ATP–G-actin is rapidly exchangeable with the actin of the medium. At high ionic strength {Tyrode [(1910) Arch. Int. Pharmacodyn. Ther.20, 205–212] solution}, starting from G-actin and protamine in the 1:1 molar ratio, long ropes are formed that can be resolved into intertwining filaments of 4–5nm diameter. The addition of protamine in a 1:1 molar ratio to a solution of F-actin in Tyrode solution causes the breakage of the actin filaments, which is also revealed by the decrease of the viscosity of the solution and the formation of ordered latero-lateral aggregates. The structures formed by reaction of protamine with G-actin can be separated from free G-actin and protamine by filtration through 0.45μm-pore-size Millipore filters. This technique has been exploited to study the exchange reaction between free actin and the actin–protamine complexes. For these studies the 1:1 actin–protamine complex formed at low ionic strength and the 2:1 actin–protamine complex formed in the presence of 23nm-free Mg2+ have been selected. In the first case the exchange reaction is practically complete in the dead time of the experiment (20s). In the second case, where the complex operates like a true ATPase, the rate of the exchange is initially comparable with the rate of the ATP cleavage. Later on, however, the complex undergoes a change and the rate of the exchange between free actin and the actin bound to protamine becomes lower than the rate of the ATPase reaction. It is proposed that the ATP exchanges for ADP directly on the G-actin bound in the complex.


1970 ◽  
Vol 25 (7) ◽  
pp. 711-713 ◽  
Author(s):  
D. Schubert ◽  
H. Frank

In mixtures of 1 volume of buffer and 2 volumes of 2-chloroethanol, the icosahedral bacteriophage fr is split into RNA and monomeric protein subunits. After removal of the RNA and after replacement of the organic solvent by water, viruslike particles can be obtained by dialysis of the protein against neutral buffers of high ionic strength, whereas multishell particles are formed in buffers of low ionic strength. All results achieved by the use of 2-chloroethanol are very similar to those obtained using acetic acid.


1973 ◽  
Vol 131 (3) ◽  
pp. 541-553 ◽  
Author(s):  
Robert W. Mayes ◽  
Roger M. Mason ◽  
David C. Griffin

1. A proteoglycan fraction (the proteoglycan subunit fraction) was prepared from extracts, with 0.15m-KCl (low-ionic-strength) and 0.5m-LaCl3, 2.0m-CaCl2 and 4.0m-guanidinium chloride (high-ionic-strength), of bovine nasal cartilage by equilibrium-density-gradient centrifugation, essentially as described by Hascall & Sajdera (1969). 2. The use of different centrifugation times showed that near-equilibrium conditions were reached by 48h for the fractions prepared from the high-ionic-strength extracts. The fraction isolated from the low-ionic-strength extract required a longer centrifugation time to reach equilibrium conditions. 3. The composition of the proteoglycan fractions from the various extracts was compared by analyses of their carbohydrate and amino acid contents. Difference indices were calculated from the amino acid analysis to compare the degree of compositional relationship between the protein components of the proteoglycans. 4. Small compositional differences were found between the proteoglycans isolated from the various high-ionic-strength extracts. The protein content of the fractions from the CaCl2 extract and the guanidinium chloride extract showed the greatest difference in this respect, although their amino acid analysis was similar. 5. The proteoglycan fraction isolated from the low-ionic-strength extract shows marked differences in composition from the fractions isolated from the high-ionic-strength extracts. Its protein and glucosamine contents were lower whereas its hexuronic acid and galactosamine contents were higher than those of the latter. It also exhibits major differences in its amino acid composition. The glucosamine:galactosamine ratio of the fraction from the low-ionic-strength extract indicates that it may be an almost exclusively chondroitin sulphate–proteoglycan. Its analysis correlates closely with that of a low-molecular-weight proteoglycan isolated from pig laryngeal cartilage by Tsiganos & Muir (1969). 6. The proteoglycan fractions from both the low- and high-ionic-strength extracts migrate as a single band in zone electrophoresis carried out in a sucrose-density gradient at both pH3.0 and pH7.0, although each showed evidence of band widening during the electrophoresis. All the proteoglycan fractions migrated with the same electrophoretic mobility at pH3.0, irrespective of the differences in composition between them. 7. The differences between the proteoglycans from the low- and high-ionic-strength extracts are discussed and the view is advanced that they may be due to association between predominantly chondroitin sulphate–proteoglycans and a keratan sulphate-enriched proteoglycan species.


Sign in / Sign up

Export Citation Format

Share Document