scholarly journals Slow light nanocoatings for ultrashort pulse compression

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Ossiander ◽  
Y.-W. Huang ◽  
W. T. Chen ◽  
Z. Wang ◽  
X. Yin ◽  
...  

AbstractTransparent materials do not absorb light but have profound influence on the phase evolution of transmitted radiation. One consequence is chromatic dispersion, i.e., light of different frequencies travels at different velocities, causing ultrashort laser pulses to elongate in time while propagating. Here we experimentally demonstrate ultrathin nanostructured coatings that resolve this challenge: we tailor the dispersion of silicon nanopillar arrays such that they temporally reshape pulses upon transmission using slow light effects and act as ultrashort laser pulse compressors. The coatings induce anomalous group delay dispersion in the visible to near-infrared spectral region around 800 nm wavelength over an 80 nm bandwidth. We characterize the arrays’ performance in the spectral domain via white light interferometry and directly demonstrate the temporal compression of femtosecond laser pulses. Applying these coatings to conventional optics renders them ultrashort pulse compatible and suitable for a wide range of applications.

Author(s):  
V. Pouget ◽  
E. Faraud ◽  
K. Shao ◽  
S. Jonathas ◽  
D. Horain ◽  
...  

Abstract This paper presents the use of pulsed laser stimulation with picosecond and femtosecond laser pulses. We first discuss the resolution improvement that can be expected when using ultrashort laser pulses. Two case studies are then presented to illustrate the possibilities of the pulsed laser photoelectric stimulation in picosecond single-photon and femtosecond two-photon modes.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shulei Li ◽  
Mingcheng Panmai ◽  
Shaolong Tie ◽  
Yi Xu ◽  
Jin Xiang ◽  
...  

Abstract Metasurfaces composed of regularly arranged and deliberately oriented metallic nanoparticles can be employed to manipulate the amplitude, phase and polarization of an incident electromagnetic wave. The metasurfaces operating in the visible to near infrared spectral range rely on the modern fabrication technologies which offer a spatial resolution beyond the optical diffraction limit. Although direct laser writing is an alternative to the fabrication of nanostructures, the achievement of regular nanostructures with deep-subwavelength periods by using this method remains a big challenge. Here, we proposed and demonstrated a novel strategy for regulating disordered plasmonic nanoparticles into nanogratings with deep-subwavelength periods and reshaped nanoparticles by using femtosecond laser pulses. The orientations of the nanogratings depend strongly on the polarization of the femtosecond laser light. Such nanogratings exhibit reflection and polarization control over the reflected light, enabling the realization of polarization sensitive optical memory and color display with high spatial resolution and good chromacity.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0195479 ◽  
Author(s):  
Jun Zhang ◽  
Bastian Hartmann ◽  
Julian Siegel ◽  
Gabriele Marchi ◽  
Hauke Clausen-Schaumann ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1638 ◽  
Author(s):  
Adrian Petris ◽  
Ileana Cristina Vasiliu ◽  
Petronela Gheorghe ◽  
Ana Maria Iordache ◽  
Laura Ionel ◽  
...  

The development of graphene-based materials for optical limiting functionality is an active field of research. Optical limiting for femtosecond laser pulses in the infrared-B (IR-B) (1.4–3 μm) spectral domain has been investigated to a lesser extent than that for nanosecond, picosecond and femtosecond laser pulses at wavelengths up to 1.1 μm. Novel nonlinear optical materials, glassy graphene oxide (GO)-based silico-phosphate composites, were prepared, for the first time to our knowledge, by a convenient and low cost sol-gel method, as described in the paper, using tetraethyl orthosilicate (TEOS), H3PO4 and GO/reduced GO (rGO) as precursors. The characterisation of the GO/rGO silico-phosphate composite films was performed by spectroscopy (Fourier-transform infrared (FTIR), Ultraviolet–Visible-Near Infrared (UV-VIS-NIR) and Raman) and microscopy (atomic force microscopy (AFM) and scanning electron microscopy (SEM)) techniques. H3PO4 was found to reduce the rGO dispersed in the precursor’s solution with the formation of vertically agglomerated rGO sheets, uniformly distributed on the substrate surface. The capability of these novel graphene oxide-based materials for the optical limiting of femtosecond laser pulses at 1550 nm wavelength was demonstrated by intensity-scan experiments. The GO or rGO presence in the film, their concentrations, the composite films glassy matrix, and the film substrate influence the optical limiting performance of these novel materials and are discussed accordingly.


2005 ◽  
Author(s):  
Baogui Wang ◽  
Iris Riemann ◽  
Karl-Juergen Halbhuber ◽  
Harald Schubert ◽  
Sigrun Kirste ◽  
...  

2014 ◽  
Vol 53 (5) ◽  
pp. 051510
Author(s):  
Sanjay Varma ◽  
Nathan Hagan ◽  
Miquel Antoine ◽  
Joseph Miragliotta ◽  
Plamen Demirev

2001 ◽  
Vol 6 (4) ◽  
pp. 446 ◽  
Author(s):  
G. Zacharakis ◽  
A. Zolindaki ◽  
V. Sakkalis ◽  
G. Filippidis ◽  
T. G. Papazoglou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document