scholarly journals Magneto-transport evidence for strong topological insulator phase in ZrTe5

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jingyue Wang ◽  
Yuxuan Jiang ◽  
Tianhao Zhao ◽  
Zhiling Dun ◽  
Anna L. Miettinen ◽  
...  

AbstractThe identification of a non-trivial band topology usually relies on directly probing the protected surface/edge states. But, it is difficult to achieve electronically in narrow-gap topological materials due to the small (meV) energy scales. Here, we demonstrate that band inversion, a crucial ingredient of the non-trivial band topology, can serve as an alternative, experimentally accessible indicator. We show that an inverted band can lead to a four-fold splitting of the non-zero Landau levels, contrasting the two-fold splitting (spin splitting only) in the normal band. We confirm our predictions in magneto-transport experiments on a narrow-gap strong topological insulator, zirconium pentatelluride (ZrTe5), with the observation of additional splittings in the quantum oscillations and also an anomalous peak in the extreme quantum limit. Our work establishes an effective strategy for identifying the band inversion as well as the associated topological phases for future topological materials research.

2021 ◽  
Vol 9 ◽  
Author(s):  
Ding Jia ◽  
Shuai Gu ◽  
Shuai Jiang ◽  
Yong Ge ◽  
Shou-qi Yuan ◽  
...  

We report the experimental and numerical realization of a pseudospin-dependent acoustic topological insulator based on two sonic crystals constructed by the same regular hexagonal rods. Based on the zone folding mechanism, we obtain double Dirac cones with a four-fold deterministic degeneracy in the sonic crystal, and realize a band inversion and topological phase transition by rotating the rods. We observe the topologically protected one-way sound propagation of pseudospin-dependent edge states in a designed topological insulator composed of two selected sonic crystals with different rotation angles of the rods. Furthermore, we experimentally demonstrate the robustness of topological sound propagation against two types of defects, in which the edge states are almost immune to backscattering, and remain pseudospin-dependent characteristics. Our work provides a diverse route for designing tunable topological functional sound devices.


2015 ◽  
Vol 114 (6) ◽  
Author(s):  
A. Takayama ◽  
T. Sato ◽  
S. Souma ◽  
T. Oguchi ◽  
T. Takahashi

2016 ◽  
Vol 4 (37) ◽  
pp. 8750-8757 ◽  
Author(s):  
Yi-zhen Jia ◽  
Wei-xiao Ji ◽  
Chang-wen Zhang ◽  
Ping Li ◽  
Miao-juan Ren ◽  
...  

Band topology and Rashba spin splitting (RSS) are two extensively explored yet exotic properties in condensed matter physics.


2013 ◽  
Vol 86 (9) ◽  
Author(s):  
Aavishkar A. Patel ◽  
Shraddha Sharma ◽  
Amit Dutta

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Fei Han ◽  
Nina Andrejevic ◽  
Thanh Nguyen ◽  
Vladyslav Kozii ◽  
Quynh T. Nguyen ◽  
...  

AbstractThermoelectrics are promising by directly generating electricity from waste heat. However, (sub-)room-temperature thermoelectrics have been a long-standing challenge due to vanishing electronic entropy at low temperatures. Topological materials offer a new avenue for energy harvesting applications. Recent theories predicted that topological semimetals at the quantum limit can lead to a large, non-saturating thermopower and a quantized thermoelectric Hall conductivity approaching a universal value. Here, we experimentally demonstrate the non-saturating thermopower and quantized thermoelectric Hall effect in the topological Weyl semimetal (WSM) tantalum phosphide (TaP). An ultrahigh longitudinal thermopower $$S_{xx} \sim 1.1 \times 10^3 \, \mu \, {\mathrm{V}} \, {\mathrm{K}}^{ - 1}$$ S x x ~ 1.1 × 1 0 3 μ V K − 1 and giant power factor $$\sim 525 \, \mu \, {\mathrm{W}} \, {\mathrm{cm}}^{ - 1} \, {\mathrm{K}}^{ - 2}$$ ~ 525 μ W cm − 1 K − 2 are observed at ~40 K, which is largely attributed to the quantized thermoelectric Hall effect. Our work highlights the unique quantized thermoelectric Hall effect realized in a WSM toward low-temperature energy harvesting applications.


2019 ◽  
Vol 7 (31) ◽  
pp. 9743-9747 ◽  
Author(s):  
Xiangting Hu ◽  
Ning Mao ◽  
Hao Wang ◽  
Chengwang Niu ◽  
Baibiao Huang ◽  
...  

Here we predict theoretically that topological edge states can be significantly tuned by switching the ferroelastic ordering in a two-dimensional (2D) topological insulator.


2017 ◽  
Vol 19 (15) ◽  
pp. 9872-9878 ◽  
Author(s):  
Hrishikesh Bhunia ◽  
Abhijit Bar ◽  
Abhijit Bera ◽  
Amlan J. Pal

Gapless edge-states with a Dirac point below the Fermi energy and band-edges at the interior observed in 2D topological insulators.


Sign in / Sign up

Export Citation Format

Share Document