Switching spin and charge between edge states in topological insulator constrictions: a transer matrix approach

2012 ◽  
Author(s):  
Viktor Krueckl ◽  
Klaus Richter
2013 ◽  
Vol 86 (9) ◽  
Author(s):  
Aavishkar A. Patel ◽  
Shraddha Sharma ◽  
Amit Dutta

2019 ◽  
Vol 7 (31) ◽  
pp. 9743-9747 ◽  
Author(s):  
Xiangting Hu ◽  
Ning Mao ◽  
Hao Wang ◽  
Chengwang Niu ◽  
Baibiao Huang ◽  
...  

Here we predict theoretically that topological edge states can be significantly tuned by switching the ferroelastic ordering in a two-dimensional (2D) topological insulator.


2017 ◽  
Vol 19 (15) ◽  
pp. 9872-9878 ◽  
Author(s):  
Hrishikesh Bhunia ◽  
Abhijit Bar ◽  
Abhijit Bera ◽  
Amlan J. Pal

Gapless edge-states with a Dirac point below the Fermi energy and band-edges at the interior observed in 2D topological insulators.


2016 ◽  
Vol 94 (12) ◽  
Author(s):  
A. Pertsova ◽  
C. M. Canali ◽  
A. H. MacDonald

2016 ◽  
Vol 113 (18) ◽  
pp. 4924-4928 ◽  
Author(s):  
Cheng He ◽  
Xiao-Chen Sun ◽  
Xiao-Ping Liu ◽  
Ming-Hui Lu ◽  
Yulin Chen ◽  
...  

A topological insulator is a material with an insulating interior but time-reversal symmetry-protected conducting edge states. Since its prediction and discovery almost a decade ago, such a symmetry-protected topological phase has been explored beyond electronic systems in the realm of photonics. Electrons are spin-1/2 particles, whereas photons are spin-1 particles. The distinct spin difference between these two kinds of particles means that their corresponding symmetry is fundamentally different. It is well understood that an electronic topological insulator is protected by the electron’s spin-1/2 (fermionic) time-reversal symmetry Tf2=−1. However, the same protection does not exist under normal circumstances for a photonic topological insulator, due to photon’s spin-1 (bosonic) time-reversal symmetry Tb2=1. In this work, we report a design of photonic topological insulator using the Tellegen magnetoelectric coupling as the photonic pseudospin orbit interaction for left and right circularly polarized helical spin states. The Tellegen magnetoelectric coupling breaks bosonic time-reversal symmetry but instead gives rise to a conserved artificial fermionic-like-pseudo time-reversal symmetry, Tp (Tp2=−1), due to the electromagnetic duality. Surprisingly, we find that, in this system, the helical edge states are, in fact, protected by this fermionic-like pseudo time-reversal symmetry Tp rather than by the bosonic time-reversal symmetry Tb. This remarkable finding is expected to pave a new path to understanding the symmetry protection mechanism for topological phases of other fundamental particles and to searching for novel implementations for topological insulators.


2021 ◽  
Vol 104 (20) ◽  
Author(s):  
Simon Wozny ◽  
Martin Leijnse ◽  
Sigurdur I. Erlingsson

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. V. Yurkevich ◽  
V. Kagalovsky

AbstractWe study the stability of multiple conducting edge states in a topological insulator against perturbations allowed by the time-reversal symmetry. A system is modeled as a multi-channel Luttinger liquid, with the number of channels equal to the number of Kramers doublets at the edge. Assuming strong interactions and weak disorder, we first formulate a low-energy effective theory for a clean translation invariant system and then include the disorder terms allowed by the time-reversal symmetry. In a clean system with N Kramers doublets, N − 1 edge states are gapped by Josephson couplings and the single remaining gapless mode describes collective motion of Cooper pairs synchronous across the channels. Disorder perturbation in this regime, allowed by the time reversal symmetry is a simultaneous backscattering of particles in all N channels. Its relevance depends strongly on the parity if the number of channel N is not very large. Our main result is that disorder becomes irrelevant with the increase of the number of edge modes leading to the stability of the edge states superconducting regime even for repulsive interactions.


Science ◽  
2020 ◽  
Vol 367 (6479) ◽  
pp. 794-797 ◽  
Author(s):  
Zhi-Da Song ◽  
Luis Elcoro ◽  
B. Andrei Bernevig

A topological insulator reveals its nontrivial bulk through the presence of gapless edge states: This is called the bulk-boundary correspondence. However, the recent discovery of “fragile” topological states with no gapless edges casts doubt on this concept. We propose a generalization of the bulk-boundary correspondence: a transformation under which the gap between the fragile phase and other bands must close. We derive specific twisted boundary conditions (TBCs) that can detect all the two-dimensional eigenvalue fragile phases. We develop the concept of real-space invariants, local good quantum numbers in real space, which fully characterize these phases and determine the number of gap closings under the TBCs. Realizations of the TBCs in metamaterials are proposed, thereby providing a route to their experimental verification.


2019 ◽  
Vol 256 (6) ◽  
pp. 1800675 ◽  
Author(s):  
Leonid S. Braginsky ◽  
Matvey V. Entin

Sign in / Sign up

Export Citation Format

Share Document