scholarly journals Zinc ion thermal charging cell for low-grade heat conversion and energy storage

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhiwei Li ◽  
Yinghong Xu ◽  
Langyuan Wu ◽  
Yufeng An ◽  
Yao Sun ◽  
...  

AbstractConverting low-grade heat from environment into electricity shows great sustainability for mitigating the energy crisis and adjusting energy configurations. However, thermally rechargeable devices typically suffer from poor conversion efficiency when a semiconductor is employed. Breaking the convention of thermoelectric systems, we propose and demonstrate a new zinc ion thermal charging cell to generate electricity from low-grade heat via the thermo-extraction/insertion and thermodiffusion processes of insertion-type cathode (VO2-PC) and stripping/plating behaviour of Zn anode. Based on this strategy, an impressively high thermopower of ~12.5 mV K−1 and an excellent output power of 1.2 mW can be obtained. In addition, a high heat-to-current conversion efficiency of 0.95% (7.25% of Carnot efficiency) is achieved with a temperature difference of 45 K. This work, which demonstrates extraordinary energy conversion efficiency and adequate energy storage, will pave the way towards the construction of thermoelectric setups with attractive properties for high value-added utilization of low-grade heat.

2019 ◽  
Vol 7 (41) ◽  
pp. 23862-23867 ◽  
Author(s):  
Jing Jiang ◽  
Hanqing Tian ◽  
Xinrui He ◽  
Qing Zeng ◽  
Yi Niu ◽  
...  

Cobalt hexacyanoferrate (CoHCF) materials were used for TRECs; when complexed with HCNTs they show higher heat-to-electricity conversion efficiency.


2017 ◽  
Vol 135 ◽  
pp. 304-316 ◽  
Author(s):  
Oleksandr Skrylnyk ◽  
Emilie Courbon ◽  
Nicolas Heymans ◽  
Marc Frère ◽  
Jacques Bougard ◽  
...  

Author(s):  
Hooman Daghooghi Mobarakeh ◽  
Keshawa Bandara ◽  
Liping Wang ◽  
Robert Wang ◽  
Patrick E. Phelan ◽  
...  

Abstract Sorption thermal energy storage (TES) seems to be an auspicious solution to overcome the issues of intermittent energy sources and utilization of low-grade heat. Ultrasound-assisted adsorption/desorption of water vapor on activated alumina is proposed as a means of low-grade heat utilization through TES. The effects of ultrasonic power on the storing stage (desorption of water vapor) were analyzed to optimize the desorption and overall efficiencies. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant total (heat plus ultrasound) input power of 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, ultrasonic-power-to-total power ratios of 0.2 and 0.4 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. The regeneration temperature and desorption rate were measured simultaneously to investigate the effects of ultrasonication on regeneration temperature and utilization of low-grade heat. The experimental results showed that using ultrasound facilitates the regeneration of activated alumina at both power ratios without increasing the total input power. With regard to regeneration temperature, incorporating ultrasound decreases the regeneration temperature hence justifying the utilization of low-grade heat for thermal energy purposes. In terms of overall energy recovery of the adsorption thermal storage process, a new metric is proposed to justify incorporating ultrasound and any other auxiliary energy along with low-grade heat.


Author(s):  
Yang Chen ◽  
Ahmad Abu-Heiba ◽  
Saiid Kassaee ◽  
Chenang Liu ◽  
Guodong Liu ◽  
...  

Abstract In the U.S., building sector is responsible for around 40% of total energy consumption and contributes about 40% of carbon emissions since 2012. Within the past several years, various optimization models and control strategies have been studied to improve buildings energy efficiency and reduce operational expenses under the constraints of satisfying occupants’ comfort requirements. However, the majority of these studies consider building electricity demand and thermal load being satisfied by unidirectional electricity flow from the power grid or on-site renewable energy generation to electrical and thermal home appliances. Opportunities for leveraging low grade heat for electricity have largely been overlooked due to impracticality at small scale. In 2016, a modular pumped hydro storage technology was invented in Oak Ridge National Laboratory, named Ground Level Integrated Diverse Energy Storage (GLIDES). In GLIDES, employing high efficiency hydraulic machinery instead of gas compressor/turbine, liquid is pumped to compress gas inside high-pressure vessel creating head on ground-level. This unique design eliminates the geographical limitation associated with existing state of the art energy storage technologies. It is easy to be scaled for building level, community level and grid level applications. Using this novel hydro-pneumatic storage technology, opportunities for leveraging low-grade heat in building can be economical. In this research, the potential of utilizing low-grade thermal energy to augment electricity generation of GLIDES is investigated. Since GLIDES relies on gas expansion in the discharge process and the gas temperature drops during this non-isothermal process, available thermal energy, e.g. from thermal storage, Combined Cooling, Heat and Power system (CCHP), can be utilized by GLIDES to counter the cooling effect of the expansion process and elevate the gas temperature and pressure and boost the roundtrip efficiency. Several groups of comparison experiments have been conducted and the experimental results show that a maximum 12.9% cost saving could be achieved with unlimited heat source for GLIDES, and a moderate 3.8% cost improvement can be expected when operated coordinately with CCHP and thermal energy storage in a smart building.


2021 ◽  
Author(s):  
Hooman Daghooghi ◽  
Keshawa Bandara ◽  
Liping Wang ◽  
Robert Wang ◽  
Mark Miner ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 481
Author(s):  
Lei Jin ◽  
Ali Seifitokaldani

Electrochemical reduction of CO2 to value-added chemicals and fuels is a promising approach to store renewable energy while closing the anthropogenic carbon cycle. Despite significant advances in developing new electrocatalysts, this system still lacks enough energy conversion efficiency to become a viable technology for industrial applications. To develop an active and selective electrocatalyst and engineer the reaction environment to achieve high energy conversion efficiency, we need to improve our knowledge of the reaction mechanism and material structure under reaction conditions. In situ spectroscopies are among the most powerful tools which enable measurements of the system under real conditions. These methods provide information about reaction intermediates and possible reaction pathways, electrocatalyst structure and active sites, as well as the effect of the reaction environment on products distribution. This review aims to highlight the utilization of in situ spectroscopic methods that enhance our understanding of the CO2 reduction reaction. Infrared, Raman, X-ray absorption, X-ray photoelectron, and mass spectroscopies are discussed here. The critical challenges associated with current state-of-the-art systems are identified and insights on emerging prospects are discussed.


Sign in / Sign up

Export Citation Format

Share Document