scholarly journals A phase field model for snow crystal growth in three dimensions

2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Gilles Demange ◽  
Helena Zapolsky ◽  
Renaud Patte ◽  
Marc Brunel
2020 ◽  
Vol 229 (19-20) ◽  
pp. 2899-2909
Author(s):  
L. V. Toropova ◽  
P. K. Galenko ◽  
D. V. Alexandrov ◽  
M. Rettenmayr ◽  
A. Kao ◽  
...  

Author(s):  
T. Philippe ◽  
H. Henry ◽  
M. Plapp

At equilibrium, the shape of a strongly anisotropic crystal exhibits corners when for some orientations the surface stiffness is negative. In the sharp-interface problem, the surface free energy is traditionally augmented with a curvature-dependent term in order to round the corners and regularize the dynamic equations that describe the motion of such interfaces. In this paper, we adopt a diffuse interface description and present a phase-field model for strongly anisotropic crystals that is regularized using an approximation of the Willmore energy. The Allen–Cahn equation is employed to model kinetically controlled crystal growth. Using the method of matched asymptotic expansions, it is shown that the model converges to the sharp-interface theory proposed by Herring. Then, the stress tensor is used to derive the force acting on the diffuse interface and to examine the properties of a corner at equilibrium. Finally, the coarsening dynamics of the faceting instability during growth is investigated. Phase-field simulations reveal the existence of a parabolic regime, with the mean facet length evolving in t , with t the time, as predicted by the sharp-interface theory. A specific coarsening mechanism is observed: a hill disappears as the two neighbouring valleys merge.


2013 ◽  
Vol 470 ◽  
pp. 100-103
Author(s):  
Dong Sheng Chen ◽  
Ming Chen ◽  
Rui Chang Wang

PFM (phase field method) was employed to study microstructure evolution, and considering the effect of solute concentration to the undercooling, we developed a phase field model for binary alloy on the basis of pure substance model. In the paper, the temperature field and solute field were coupled together in the phase field model to calculate the crystal growth of magnesium alloy in directional solidification. The simulation results showed a non-planar crystal growth of planar to cellular to columnar dendrite, the comparison of different dendrite patterns were carried out in the numerical simulation, and with the increasing of the anisotropy, the second dendrite arms became more developed.


2007 ◽  
Vol 539-543 ◽  
pp. 2437-2442
Author(s):  
Yoshihiro Suwa ◽  
Yoshiyuki Saito ◽  
Hidehiro Onodera

The kinetics and topology of grain growth in three dimensions were simulated using a phase-field model with anisotropic grain-boundary mobilities. In order to perform large scale calculations we applied both modifications of algorithms and parallel coding techniques to the Fan and Chen's phase-field algorithm. Kinetics of abnormal grain growth is presented. It is observed that the grains of a minor component which are at the beginning surrounded preferentially by boundaries of high mobility grow faster than the grains of a major component until the texture reverses completely. Additionally, topological results of grain structures, such as grain size distributions and grain face distributions, are discussed


2021 ◽  
pp. 108128652110520
Author(s):  
Elizaveta Zipunova ◽  
Evgeny Savenkov

In this paper, we present a consistent derivation of the phase field model for electrically induced damage. The derivation is based on Gurtin’s microstress and microforce theory and the Coleman–Noll procedure. The resulting model accounts for Ohmic currents, includes charge conservation law and allows for finite electric permittivity and conductivity distribution in the medium. Special attention is devoted to the case when the damaged region is a codimension-two object, i.e., a curve in three dimensions. It is shown that in this case the free energy of the model necessarily includes a high-order term, which ensures the well-posedness of the problem. A special problem setting is proposed to account for the prescribed charge distribution. Local features of the phase field distribution are illustrated with one-dimensional axisymmetric numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document