scholarly journals Modelling of Microstructure Evolution during Laser Processing of Intermetallic Containing Ni-Al Alloys

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Mohammad Amin Jabbareh ◽  
Hamid Assadi

There is a growing interest in laser melting processes, e.g., for metal additive manufacturing. Modelling and numerical simulation can help to understand and control microstructure evolution in these processes. However, standard methods of microstructure simulation are generally not suited to model the kinetic effects associated with rapid solidification in laser processing, especially for material systems that contain intermetallic phases. In this paper, we present and employ a tailored phase-field model to demonstrate unique features of microstructure evolution in such systems. Initially, the problem of anomalous partitioning during rapid solidification of intermetallics is revisited using the tailored phase-field model, and the model predictions are assessed against the existing experimental data for the B2 phase in the Ni-Al binary system. The model is subsequently combined with a Potts model of grain growth to simulate laser processing of polycrystalline alloys containing intermetallic phases. Examples of simulations are presented for laser processing of a nickel-rich Ni-Al alloy, to demonstrate the application of the method in studying the effect of processing conditions on various microstructural features, such as distribution of intermetallic phases in the melt pool and the heat-affected zone. The computational framework used in this study is envisaged to provide additional insight into the evolution of microstructure in laser processing of industrially relevant materials, e.g., in laser welding or additive manufacturing of Ni-based superalloys.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Min Yang ◽  
Lu Wang ◽  
Wentao Yan

AbstractA three-dimensional phase-field model is developed to simulate grain evolutions during powder-bed-fusion (PBF) additive manufacturing, while the physically-informed temperature profile is implemented from a thermal-fluid flow model. The phase-field model incorporates a nucleation model based on classical nucleation theory, as well as the initial grain structures of powder particles and substrate. The grain evolutions during the three-layer three-track PBF process are comprehensively reproduced, including grain nucleation and growth in molten pools, epitaxial growth from powder particles, substrate and previous tracks, grain re-melting and re-growth in overlapping zones, and grain coarsening in heat-affected zones. A validation experiment has been carried out, showing that the simulation results are consistent with the experimental results in the molten pool and grain morphologies. Furthermore, the grain refinement by adding nanoparticles is preliminarily reproduced and compared against the experimental result in literature.


2011 ◽  
Vol 233-235 ◽  
pp. 1782-1785
Author(s):  
Zhong Chu ◽  
Guo Qun Zhao

Based on the microscope phase-field model,the evolution of atom morphology, the long range order(lro) parameter and concentration can be gotten, and atomic clustering and ordering during the precipitation process of Ni-Cr-Al alloy could be obtained. The Ni-14at.%Cr-15.5at.%Al alloy is studied and the temperature of precipitation are 973K. It was showed that the ordering of both Al and Cr atoms take place simultaneously during the precipitation process of Ni-Al-Cr alloy, Cr atoms transfer to the boundaries of L12phases, the domain of rich Cr atoms are formed. At the boundaries of L12phases, Cr atoms may substitute the Al sublattice, and the D022phases are formed.


2005 ◽  
Vol 87 (22) ◽  
pp. 221910 ◽  
Author(s):  
X. H. Guo ◽  
San-Qiang Shi ◽  
X. Q. Ma

1998 ◽  
Vol 58 (3) ◽  
pp. 3436-3450 ◽  
Author(s):  
N. A. Ahmad ◽  
A. A. Wheeler ◽  
W. J. Boettinger ◽  
G. B. McFadden

2014 ◽  
Vol 794-796 ◽  
pp. 740-745 ◽  
Author(s):  
Xiong Yang ◽  
Li Jun Zhang ◽  
Yong Du

During rapid solidification, interfaces are often driven far from equilibrium and the "solute trapping" phenomenon is usually observed. Very recently, a phase field model with finite interface dissipation, in which separate kinetic equations are assigned to each phase concentration instead of an equilibrium partitioning condition, has been newly developed. By introducing the so-called interface permeability, the phase field model with finite interface dissipation can nicely describe solute trapping during solidification in the length scale of micrometer. This model was then applied to perform a phase field simulation in a Al-Sn alloy (Al-0.2 at.% Sn) during rapid solidification. A simplified linear phase diagram was constructed for providing the reliable driving force and potential information. The other thermophysical parameters, such as interface energy and diffusivities, were directly taken from the literature. As for the interface mobility, it was estimated via a kinetic relationship in the present work. According to the present phase field simulation, the interface velocity increases as temperature decreases, resulting in the enhancement of solute trapping. Moreover, the simulated solute segregation coefficients in Al-0.2 at.% Sn can nicely reproduce the experimental data.


Sign in / Sign up

Export Citation Format

Share Document