scholarly journals The role of brain perivascular space burden in early-stage Parkinson’s disease

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ting Shen ◽  
Yumei Yue ◽  
Shuai Zhao ◽  
Juanjuan Xie ◽  
Yanxing Chen ◽  
...  

AbstractPerivascular space (PVS) is associated with neurodegenerative diseases, while its effect on Parkinson’s disease (PD) remains unclear. We aimed to investigate the clinical and neuroimaging significance of PVS in basal ganglia (BG) and midbrain in early-stage PD. We recruited 40 early-stage PD patients and 41 healthy controls (HCs). Both PVS number and volume were calculated to evaluate PVS burden on 7 T magnetic resonance imaging images. We compared PVS burden between PD and HC, and conducted partial correlation analysis between PVS burden and clinical and imaging features. PD patients had a significantly more serious PVS burden in BG and midbrain, and the PVS number in BG was significantly correlated to the PD disease severity and L-dopa equivalent dosage. The fractional anisotropy and mean diffusivity values of certain subcortical nuclei and white matter fibers within or nearby the BG and midbrain were significantly correlated with the ipsilateral PVS burden indexes. Regarding to the midbrain, the difference between bilateral PVS burden was, respectively, correlated to the difference between fiber counts of white fiber tract passing through bilateral substantia nigra in PD. Our study suggests that PVS burden indexes in BG are candidate biomarkers to evaluate PD motor symptom severity and aid in predicting medication dosage. And our findings also highlight the potential correlations between PVS burden and both grey and white matter microstructures.

2021 ◽  
pp. 155005942110582
Author(s):  
Sophie A. Stewart ◽  
Laura Pimer ◽  
John D. Fisk ◽  
Benjamin Rusak ◽  
Ron A. Leslie ◽  
...  

Parkinson's disease (PD) is a neurodegenerative disorder that is typified by motor signs and symptoms but can also lead to significant cognitive impairment and dementia Parkinson's Disease Dementia (PDD). While dementia is considered a nonmotor feature of PD that typically occurs later, individuals with PD may experience mild cognitive impairment (PD-MCI) earlier in the disease course. Olfactory deficit (OD) is considered another nonmotor symptom of PD and often presents even before the motor signs and diagnosis of PD. We examined potential links among cognitive impairment, olfactory functioning, and white matter integrity of olfactory brain regions in persons with early-stage PD. Cognitive tests were used to established groups with PD-MCI and with normal cognition (PD-NC). Olfactory functioning was examined using the University of Pennsylvania Smell Identification Test (UPSIT) while the white matter integrity of the anterior olfactory structures (AOS) was examined using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) analysis. Those with PD-MCI demonstrated poorer olfactory functioning and abnormalities based on all DTI parameters in the AOS, relative to PD-NC individuals. OD and microstructural changes in the AOS of individuals with PD may serve as additional biological markers of PD-MCI.


2021 ◽  
Vol 13 ◽  
Author(s):  
Lin Zhang ◽  
Qin Shen ◽  
Haiyan Liao ◽  
Junli Li ◽  
Tianyu Wang ◽  
...  

There is increasing evidence to show that motor symptom lateralization in Parkinson’s disease (PD) is linked to non-motor features, progression, and prognosis of the disease. However, few studies have reported the difference in cortical complexity between patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to investigate the differences in the cortical complexity between early-stage LPD and RPD. High-resolution T1-weighted magnetic resonance images of the brain were acquired in 24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD), and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12. Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with HCs. However, in patients with LPD, we did not identify significantly abnormal cortical complex change compared with HCs. Moreover, we observed that the mean FD in STG was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among the three groups. Our findings support the specific influence of asymmetrical motor symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS and left STG might play a crucial role in RPD.


2013 ◽  
Vol 19 (3) ◽  
pp. 349-354 ◽  
Author(s):  
Catherine Gallagher ◽  
Brian Bell ◽  
Barbara Bendlin ◽  
Matthew Palotti ◽  
Ozioma Okonkwo ◽  
...  

AbstractRecent studies suggest that white matter abnormalities contribute to both motor and non-motor symptoms of Parkinson's disease. The present study was designed to investigate the degree to which diffusion tensor magnetic resonance imaging (DTI) indices are related to executive function in Parkinson's patients. We used tract-based spatial statistics to compare DTI data from 15 patients to 15 healthy, age- and education-matched controls. We then extracted mean values of fractional anisotropy (FA) and mean diffusivity (MD) within an a priori frontal mask. Executive function composite Z scores were regressed against these DTI indices, age, and total intracranial volume. In Parkinson's patients, FA was related to executive composite scores, and both indices were related to Stroop interference scores. We conclude that white matter microstructural abnormalities contribute to cognitive deficits in Parkinson's disease. Further work is needed to determine whether these white matter changes reflect the pathological process or a clinically important comorbidity. (JINS, 2013, 19, 1–6)


Author(s):  
Katie Wiltshire ◽  
Luis Concha ◽  
Myrlene Gee ◽  
Thomas Bouchard ◽  
Christian Beaulieu ◽  
...  

Background:In Parkinson's disease (PD) cell loss in the substantia nigra is known to result in motor symptoms; however widespread pathological changes occur and may be associated with non-motor symptoms such as cognitive impairment. Diffusion tensor imaging is a quantitative imaging method sensitive to the micro-structure of white matter tracts.Objective:To measure fractional anisotropy (FA) and mean diffusivity (MD) values in the corpus callosum and cingulum pathways, defined by diffusion tensor tractography, in patients with PD, PD with dementia (PDD) and controls and to determine if these measures correlate with Mini-Mental Status Examination (MMSE) scores in parkinsonian patients.Methods:Patients with PD (17 Males [M], 12 Females [F]), mild PDD (5 M, 1F) and controls (8 M, 7F) underwent cognitive testing and MRI scans. The corpus callosum was divided into four regions and the cingulum into two regions bilaterally to define tracts using the program DTIstudio (Johns Hopkins University) using the fiber assignment by continuous tracking algorithm. Volumetric MRI scans were used to measure white and gray matter volumes.Results:Groups did not differ in age or education. There were no overall FA or MD differences between groups in either the corpus callosum or cingulum pathways. In PD subjects the MMSE score correlated with MD within the corpus callosum. These findings were independent of age, sex and total white matter volume.Conclusions:The data suggest that the corpus callosum or its cortical connections are associated with cognitive impairment in PD patients.


2013 ◽  
Vol 550 ◽  
pp. 64-68 ◽  
Author(s):  
Hengjun J. Kim ◽  
Sang Joon Kim ◽  
Ho Sung Kim ◽  
Choong Gon Choi ◽  
Namkug Kim ◽  
...  

2021 ◽  
Author(s):  
Yiming Xiao ◽  
Terry M. Peters ◽  
Ali R. Khan

AbstractParkinson’s disease (PD) is a progressive neurodegenerative disorder that is characterized by a range of motor and non-motor symptoms, often with the motor dysfunction initiated unilaterally. Knowledge regarding disease-related alterations in white matter pathways can effectively help improve the understanding of the disease and propose targeted treatment strategies. Microstructural imaging techniques, including diffusion tensor imaging (DTI), allows inspection of white matter integrity to study the pathogenesis of various neurological conditions. Previous voxel-based analyses with DTI measures, such as fractional anisotropy and mean diffusivity have uncovered changes in brain regions that are associated with PD, but the conclusions were inconsistent, partially due to small patient cohorts and the lack of consideration for clinical laterality onset, particularly in early PD. Fixel-based analysis (FBA) is a recent framework that offers tract-specific insights regarding white matter health, but very few FBA studies on PD exist. We present a study that reveals strengthened and weakened white matter integrity that is subject to symptom laterality in a large drug-naïve de novo PD cohort using complementary DTI and FBA measures. The findings suggest that the disease gives rise to both functional degeneration and the creation of compensatory networks in the early stage.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christina Andica ◽  
Koji Kamagata ◽  
Yuya Saito ◽  
Wataru Uchida ◽  
Shohei Fujita ◽  
...  

AbstractUsing a fixel-based analysis (FBA), we assessed the fiber-specific white matter (WM) alterations in nonmedicated patients with early-stage Parkinson’s disease (PD) with tremor-dominant (TD; n = 53; mean age, 61.7 ± 8.7 years) and postural instability and gait disorder (PIGD; n = 27; mean age, 57.8 ± 8.1 years) motor subtypes and age- and sex-matched healthy controls (HC; n = 43; mean age, 61.6 ± 9.2 years) from Parkinson’s Progression Markers Initiative dataset. FBA revealed significantly increased macrostructural fiber cross section and a combination of fiber density and cross section metrics within the corticospinal tract in patients with TD-PD compared with HC. Nonetheless, no significant changes in FBA-derived metrics were found in patients with PIGD-PD compared with HC or patients with TD-PD. Our results may provide evidence of WM neural compensation mechanisms in patients with TD-PD marked by increases in fiber bundle size and the ability to relay information between brain regions.


2020 ◽  
Vol 10 (4) ◽  
pp. 1699-1707
Author(s):  
Laura Ruck ◽  
Marcus M. Unger ◽  
Jörg Spiegel ◽  
Jan Bürmann ◽  
Ulrich Dillmann ◽  
...  

Background: Altered gastric motility is a frequent non-motor symptom of Parkinson’s disease (PD). It has been hypothesized that disturbed gastric motility contributes to motor fluctuations in PD due to an erratic gastro-duodenal transport and an unpredictable absorption of drugs. Objective: We investigated whether patient-reported fluctuations are associated with parameters of gastric motility visualized by real-time magnetic resonance imaging (MRI) of the stomach. Methods: We analyzed real-time MRI-scans of the stomach after an overnight fasting period in 16 PD patients and 20 controls. MRI was performed 1) in the fasting state, 2) directly after a test meal, and 3) 4 hours postprandially. Gastric motility indices were calculated and compared between groups. Results: MRI showed an attenuated gastric motility in PD patients compared to controls. The difference was most obvious in the early postprandial phase. Gastric motility was not associated with patient-reported motor fluctuations. Using an iron-containing capsule we were able to retrace retention of drugs in the stomach. Conclusion: The results of this study stress the importance of considering the phase of digestion when investigating gastric motility in PD. Despite theoretical considerations, we did not find robust evidence for an association between MRI parameters of gastric motility and patient-reported motor fluctuations. For future studies that aim to investigate gastric motility in PD by MRI, we suggest multiple short-time MRIs to better track the whole gastro-duodenal phase in PD. Such an approach would also allow to retrace the retention of drugs in the stomach as shown by our approach using an iron-containing capsule.


2019 ◽  
Vol 41 (2) ◽  
pp. 357-364 ◽  
Author(s):  
Laura Pelizzari ◽  
Sonia Di Tella ◽  
Maria M. Laganà ◽  
Niels Bergsland ◽  
Federica Rossetto ◽  
...  

2021 ◽  
Author(s):  
long qian ◽  
chaoyong xiao ◽  
Sidong Liu ◽  
zaixu cui ◽  
xiao hu ◽  
...  

Abstract The inter-tract/region dependencies of white-matter in Parkinson’s disease are usually ignored by standard statistical tests. Moreover, it remains unclear whether the disruption of white-matter tracts/regions suffices to identify Parkinson’s disease patients from healthy controls. A machine learning approach was applied to capture the interdependencies between white-matter tracts/regions and to differentiate PD patients from healthy controls. First, the mean regional white-matter profiles, including white-matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, were extracted as features in Parkinson’s disease patients (N = 78) and in healthy controls (N = 91). Then, the feature selection and classification were performed using t-test and linear support vector machine, respectively. Last, the relationships between clinical variables and regional magnetic resonance indices were estimated. Our results showed the combined features (white-matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) had the best performance with an accuracy of 75.15% and area under curve of 0.8171, respectively. The most discriminative white-matter features were centered on the association fibers, commissural fibers, projection fibers, and striatal fibers. The discriminative regions of right anterior limb of internal capsule had positive association trends with the Unified Parkinson Disease Rating Scale III score; while the genu of corpus callosum and right retrolenticular part of internal capsule had positively association trends with the Hamilton Depression Rating Scale score. Our finding showed the multivariate machine learning approach is a promising tool to detect abnormal white-matter tracts/regions in Parkinson’s disease, and provides us a multidimensional means for neuroimaging classification.


Sign in / Sign up

Export Citation Format

Share Document