scholarly journals Development of COVID-19 vaccine using a dual Toll-like receptor ligand liposome adjuvant

npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mayuresh M. Abhyankar ◽  
Barbara J. Mann ◽  
Jeffrey M. Sturek ◽  
Savannah Brovero ◽  
G. Brett Moreau ◽  
...  

AbstractWe developed a SARS-CoV-2 spike subunit vaccine formulation containing dual TLR ligand liposome adjuvant. The vaccine-induced robust systemic neutralizing antibodies and completely protected mice from a lethal challenge. Two immunizations protected against lung injury and cleared the virus from lungs upon challenge. The adjuvanted vaccine also elicited systemic and local anti-Spike IgA which can be an important feature for a COVID-19 vaccine.

2020 ◽  
Vol 19 (1) ◽  
pp. 120-126
Author(s):  
Ayinuerguli Adili ◽  
Adilijiang Kari ◽  
Chuanlong Song ◽  
Abulaiti Abuduhaer

We have examined the mechanism underlying amelioration of sepsis-induced acute lung injury by chelidonine in newborn mice. To this end, a sepsis model was established using cecal ligation and puncture in newborn mice. The sepsis-induced acute lung injury was associated with an increased inflammatory infiltration and pulmonary congestion, as well as abnormal alveolar morphology. The lung injury-associated increased tumor necrosis factor-α and interleukin-1β in bronchoalveolar lavage fluid and lung, the markers of inflammatory infiltration and pulmonary congestion, diminished by chelidonine treatment. Chelidonine administration also downregulated protein levels of toll-like receptor 4, myeloid differentiation factor 88, phosphorylated nuclear factor-kappa B, and nuclear factor-kappa B that are elevated in response to sepsis. In conclusion, chelidonine provides a potential therapeutic strategy for newborn mice with acute lung injury.


2020 ◽  
Vol 18 (2) ◽  
pp. 201-206
Author(s):  
Qiu Nan ◽  
Xu Xinmei ◽  
He Yingying ◽  
Fan Chengfen

Sepsis, with high mortality, induces deleterious organ dysfunction and acute lung injury. Natural compounds show protective effect against sepsis-induced acute lung injury. Juglone, a natural naphthoquinone, demonstrates pharmacological actions as a pro-apoptotic substrate in tumor treatment and anti-inflammation substrate in organ injury. In this study, the influence of juglone on sepsis-induced acute lung injury was investigated. First, a septic mice model was established via cecal ligation and puncture, and then verified via histopathological analysis of lung tissues, the wet/dry mass ratio and myeloperoxidase activity was determined. Cecal ligation and puncture could induce acute lung injury in septic mice, as demonstrated by alveolar damage and increase of wet/dry mass ratio and myeloperoxidase activity. However, intragastric administration juglone attenuated cecal ligation and puncture-induced acute lung injury. Secondly, cecal ligation and puncture-induced increase of inflammatory cells in bronchoalveolar lavage fluid was also alleviated by the administration of juglone. Similarly, the protective effect of juglone against cecal ligation and puncture-induced acute lung injury was accompanied by a reduction of pro-inflammatory factor secretion in bronchoalveolar lavage fluid and lung tissues. Cecal ligation and puncture could activate toll-like receptor 4/nuclear factor-kappa B signaling pathway, and administration of juglone suppressed toll-like receptor 4/nuclear factor-kappa B activation. In conclusion, juglone attenuated cecal ligation and puncture-induced lung damage and inflammatory response through inactivation of toll-like receptor 4/nuclear factor-kappa B, suggesting a potential therapeutic strategy in the treatment of sepsis-induced acute lung injury.


Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 418
Author(s):  
Youngmin Park ◽  
Yeonsu Oh ◽  
Miaomiao Wang ◽  
Llilianne Ganges ◽  
José Alejandro Bohórquez ◽  
...  

The efficacy of a novel subunit vaccine candidate, based in the CSFV E2 glycoprotein produced in plants to prevent classical swine fever virus (CSFV) vertical transmission, was evaluated. A Nicotiana benthamiana tissue culture system was used to obtain a stable production of the E2-glycoprotein fused to the porcine Fc region of IgG. Ten pregnant sows were divided into three groups: Groups 1 and 2 (four sows each) were vaccinated with either 100 μg/dose or 300 μg/dose of the subunit vaccine at 64 days of pregnancy. Group 3 (two sows) was injected with PBS. Groups 1 and 2 were boosted with the same vaccine dose. At 10 days post second vaccination, the sows in Groups 2 and 3 were challenged with a highly virulent CSFV strain. The vaccinated sows remained clinically healthy and seroconverted rapidly, showing efficient neutralizing antibodies. The fetuses from vaccinated sows did not show gross lesions, and all analyzed tissue samples tested negative for CSFV replication. However, fetuses of non-vaccinated sows had high CSFV replication in tested tissue samples. The results suggested that in vaccinated sows, the plant produced E2 marker vaccine induced the protective immunogenicity at challenge, leading to protection from vertical transmission to fetuses.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Rufeng Lu ◽  
Yueguo Wu ◽  
Honggang Guo ◽  
Zhuoyi Zhang ◽  
Yuzhou He

Influenza A virus infections can cause acute lung injury (ALI) in humans; thus, the identification of potent antiviral agents is urgently required. Herein, the effects of salidroside on influenza A virus-induced ALI were investigated in a murine model. BALB/c mice were intranasally inoculated with H1N1 virus and treated with salidroside. The results of this study show that salidroside treatment (30 and 60 mg/kg) significantly attenuated the H1N1 virus-induced histological alterations in the lung and inhibited inflammatory cytokine production. Salidroside also decreased the wet/dry ratio, viral titers, and Toll-like receptor 4 expression in the lungs. Therefore, salidroside may represent a potential therapeutic reagent for the treatment of influenza A virus-induced ALI.


2020 ◽  
Vol 19 (3) ◽  
pp. 277-282
Author(s):  
Tian Liu ◽  
Siyi Jiang ◽  
Shengwei Jia ◽  
Fuxiang Fan

Acute lung injury refers to the injury of alveolar epithelial cells and pulmonary capillary endothelial cells caused by noncardiac factors. To better combat the disease, there is an urgent need to develop more effective drugs. Sepsis is a syndrome of systemic inflammation caused by infection, and the molecular mechanism by which sepsis induces acute lung injury has not been clearly determined. Bilobalide is a unique component of Ginkgo biloba. Although it has multiple biological functions, its role in sepsis induced acute lung injury needs further study. In this study, we found that bilobalide alleviated cecal ligation and puncture induced acute lung injury. Additionally, bilobalide regulated cecal ligation and puncture induced lung injury through toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-kappa B pathway. We therefore conclude that bilobalide may be a potential drug for the treatment of sepsis induced acute lung injury.


2014 ◽  
Vol 95 (2) ◽  
pp. 301-306 ◽  
Author(s):  
R. Garg ◽  
L. Latimer ◽  
E. Simko ◽  
V. Gerdts ◽  
A. Potter ◽  
...  

The majority of infections, including those caused by respiratory syncytial virus (RSV), occur at mucosal surfaces. As no RSV vaccine is available our goal is to produce an effective subunit vaccine with an adjuvant suitable for mucosal delivery and cross-presentation. A truncated secreted version of the RSV fusion (ΔF) protein formulated with polyI : C, an innate defence regulator peptide and polyphosphazene, induced local and systemic immunity, including affinity maturation of RSV F-specific IgG, IgA and virus-neutralizing antibodies, and F-specific CD8+ T-cells in the lung, when delivered intranasally. Furthermore, this ΔF protein formulation promoted the production of CD8+ central memory T-cells in the mediastinal lymph nodes and provided protection from RSV challenge. Formulation of ΔF protein with this adjuvant combination enhanced uptake by lung dendritic cells and trafficking to the draining lymph nodes. The ΔF protein formulation was confirmed to be highly efficacious and safe in cotton rats.


2003 ◽  
Vol 10 (4) ◽  
pp. 558-563 ◽  
Author(s):  
C. S. M. Oude Nijhuis ◽  
E. Vellenga ◽  
S. M. G. J. Daenen ◽  
W. A. Kamps ◽  
E. S. J. M. de Bont

ABSTRACT Cancer patients who are leukopenic due to chemotherapy are susceptible to bacterial infections. Normally, clinical conditions during bacterial infections are caused by pathogen-associated molecular patterns, which are components that bind to Toll-like receptor (TLR) 2 (TLR-2) and TLR-4 on leukocytes, resulting in the production of inflammatory cytokines. The mechanism of this inflammatory response in cancer patients with diminished numbers of leukocytes is not completely clear. The levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha measured in the circulation of leukopenic cancer patients are lower than those measured in that of nonleukopenic patients during bacterial infections, whereas plasma interleukin 8 (IL-8) levels show distinct identical increases during bacterial infections in both leukopenic and nonleukopenic patients. Normally, these cytokines are mainly secreted by leukocytes. In cancer patients with bacterial infections and a diminished number of leukocytes, other sources of IL-8 production, such as endothelial cells, might be expected. Endothelial cells instead of leukocytes become the most important producers of IL-8 during bacterial infections in patients with chemotherapy-induced leukopenia through TLR-2 and TLR-4 signaling. Whole blood samples from six cancer patients were stimulated with lipopolysaccharide (LPS), and then IL-8 concentrations in supernatants were measured. Further, human umbilical vein endothelial cells (HUVECs) were incubated with sera from leukopenic cancer patients with or without bacterial infections, and then IL-8 concentrations in supernatants were measured (n = 6). In addition, the same HUVEC experiment was performed with the addition of neutralizing antibodies against TLR-2 and TLR-4. During leukopenia (<109 cells/liter), LPS stimulation of whole blood did not result in an increase in IL-8 levels. However, when endothelial cells were incubated with sera from leukopenic cancer patients during bacterial infections, a three- to eightfold increase in IL-8 production was found, compared to the IL-8 production found after incubation with sera from patients without signs of infections. This increase did not reflect a higher level of IL-8 already present in the sera. Further, we demonstrated that IL-8 production induced in endothelial cells by sera from patients with documented gram-negative infections could be reduced significantly by up to 40% when the cells were incubated with neutralizing antibodies against TLR-4 (P = 0.028). The addition of TLR-2 antibodies slightly enhanced the reduction of IL-8 production. These results suggest that during bacterial infections in cancer patients with markedly diminished numbers of leukocytes, endothelial cells become important producers of IL-8 through TLR-4 signaling and, to a lesser extent, TLR-2 signaling.


Sign in / Sign up

Export Citation Format

Share Document