P bodies get viscous

Author(s):  
Daryl J. David
Keyword(s):  
Author(s):  
Mina N. Anadolu ◽  
Wayne S. Sossin

In neurons, mRNAs are transported to distal sites to allow for localized protein synthesis. There are many diverse mechanisms underlying this transport. For example, an individual mRNA can be transported in an RNA transport particle that is tailored to the individual mRNA and its associated binding proteins. In contrast, some mRNAs are transported in liquid-liquid phase separated structures called neuronal RNA granules that are made up of multiple stalled polysomes, allowing for rapid initiation-independent production of proteins required for synaptic plasticity. Moreover, neurons have additional types of liquid-liquid phase–separated structures containing mRNA, such as stress granules and P bodies. This chapter discusses the relationships between all of these structures, what proteins distinguish them, and the possible roles they play in the complex control of mRNA translation at distal sites that allow neurons to use protein synthesis to refine their local proteome in many different ways.


2019 ◽  
Vol 39 (24) ◽  
Author(s):  
Tyler Matheny ◽  
Bhalchandra S. Rao ◽  
Roy Parker

ABSTRACT The eukaryotic cytosol contains multiple RNP granules, including P-bodies and stress granules. Three different methods have been used to describe the transcriptome of stress granules or P-bodies, but how these methods compare and how RNA partitioning occurs between P-bodies and stress granules have not been addressed. Here, we compare the analysis of the stress granule transcriptome based on differential centrifugation with and without subsequent stress granule immunopurification. We find that while differential centrifugation alone gives a first approximation of the stress granule transcriptome, this methodology contains nonspecific transcripts that play a confounding role in the interpretation of results. We also immunopurify and compare the RNAs in stress granules and P-bodies under arsenite stress and compare those results to those for the P-body transcriptome described under nonstress conditions. We find that the P-body transcriptome is dominated by poorly translated mRNAs under nonstress conditions, but during arsenite stress, when translation is globally repressed, the P-body transcriptome is very similar to the stress granule transcriptome. This suggests that translation is a dominant factor in targeting mRNAs into both P-bodies and stress granules, and during stress, when most mRNAs are untranslated, the composition of P-bodies reflects this broader translation repression.


2012 ◽  
Vol 198 (4) ◽  
pp. 529-544 ◽  
Author(s):  
Virginia Castilla-Llorente ◽  
Lee Spraggon ◽  
Miwako Okamura ◽  
Saif Naseeruddin ◽  
Matthew Adamow ◽  
...  

The microRNA (miRNA)-induced silencing complex (miRISC) controls gene expression by a posttranscriptional mechanism involving translational repression and/or promoting messenger RNA (mRNA) deadenylation and degradation. The GW182/TNRC6 (GW) family proteins are core components of the miRISC and are essential for miRNA function. We show that mammalian GW proteins have distinctive functions in the miRNA pathway, with GW220/TNGW1 being essential for the formation of GW/P bodies containing the miRISC. miRISC aggregation and formation of GW/P bodies sequestered and stabilized translationally repressed target mRNA. Depletion of GW220 led to the loss of GW/P bodies and destabilization of miRNA-targeted mRNA. These findings support a model in which the cellular localization of the miRISC regulates the fate of the target mRNA.


2010 ◽  
Vol 21 (15) ◽  
pp. 2624-2638 ◽  
Author(s):  
Cornelia Kilchert ◽  
Julie Weidner ◽  
Cristina Prescianotto-Baschong ◽  
Anne Spang

mRNA is sequestered and turned over in cytoplasmic processing bodies (PBs), which are induced by various cellular stresses. Unexpectedly, in Saccharomyces cerevisiae, mutants of the small GTPase Arf1 and various secretory pathway mutants induced a significant increase in PB number, compared with PB induction by starvation or oxidative stress. Exposure of wild-type cells to osmotic stress or high extracellular Ca2+ mimicked this increase in PB number. Conversely, intracellular Ca2+-depletion strongly reduced PB formation in the secretory mutants. In contrast to PB induction through starvation or osmotic stress, PB formation in secretory mutants and by Ca2+ required the PB components Pat1 and Scd6, and calmodulin, indicating that different stressors act through distinct pathways. Consistent with this hypothesis, when stresses were combined, PB number did not correlate with the strength of the translational block, but rather with the type of stress encountered. Interestingly, independent of the stressor, PBs appear as spheres of ∼40–100 nm connected to the endoplasmic reticulum (ER), consistent with the idea that translation and silencing/degradation occur in a spatially coordinated manner at the ER. We propose that PB assembly in response to stress occurs at the ER and depends on intracellular signals that regulate PB number.


Author(s):  
M. Sankaranarayanan ◽  
Ryan J. Emenecker ◽  
Marcus Jahnel ◽  
Irmela R. E. A. Trussina ◽  
Matt Wayland ◽  
...  

ABSTRACTBiomolecular condensates that form via liquid-liquid phase separation can exhibit diverse physical states. Despite considerable progress, the relevance of condensate physical states forin vivobiological function remains limited. Here, we investigated the physical properties ofin vivoprocessing bodies (P bodies) and their impact on mRNA storage in matureDrosophilaoocytes. We show that the conserved DEAD-box RNA helicase Me31B forms P body condensates which adopt a less dynamic, arrested physical state. We demonstrate that structurally distinct proteins and hydrophobic and electrostatic interactions, together with RNA and intrinsically disordered regions, regulate the physical properties of P bodies. Finally, using live imaging, we show that the arrested state of P bodies is required to prevent the premature release ofbicoid(bcd) mRNA, a body axis determinant, and that P body dissolution leads tobcdrelease. Together, this work establishes a role for arrested states of biomolecular condensates in regulating cellular function in a developing organism.


2020 ◽  
Author(s):  
Marco R. Rink ◽  
Marisa A.P. Baptista ◽  
Thomas Hennig ◽  
Adam W. Whisnant ◽  
Natalia Wolf ◽  
...  

AbstractFluorogenic aptamers are an alternative to established methodology for real-time imaging of RNA transport and dynamics. We developed Broccoli-aptamer concatemers ranging from 4 to 128 substrate-binding site repeats and characterized their behavior fused to an mCherry-coding mRNA in transient transfection, stable expression, and in recombinant cytomegalovirus infection. Concatemerization of substrate-binding sites increased Broccoli fluorescence up to a concatemer length of 16 copies, upon which fluorescence did not increase and mCherry signals declined. This was due to the combined effects of RNA aptamer aggregation, a nuclear export defect and reduced RNA stability. Unfortunately, both cellular and cytomegalovirus genomes were unable to maintain and express high Broccoli concatemer copy numbers, possibly due to recombination events. Overexpression of Broccoli-tagged mRNA led to the formation of p-bodies. However, Broccoli RNAs did not localize to these sites. Interestingly, negative effects of Broccoli concatemers could be partially rescued by introducing linker sequences in between Broccoli repeats warranting further studies. Finally, we show that even though substrate-bound Broccoli is easily photobleached, it can still be utilized in live-cell imaging by adapting a time-lapse imaging protocol.


2018 ◽  
Author(s):  
John M. McLaughlin ◽  
Daniel F.Q. Smith ◽  
Irina E. Catrina ◽  
Diana P. Bratu

ABSTRACTEmbryonic axis patterning in Drosophila melanogaster is partly achieved by mRNAs that are maternally localized to the oocyte; the spatio-temporal regulation of these transcripts’ stability and translation is a characteristic feature of oogenesis. While protein regulatory factors are necessary for the translational regulation of some maternal transcripts (e.g. oskar and gurken), small RNA pathways are also known to regulate mRNA stability and translation in eukaryotes. MicroRNAs (miRNAs) are small RNA regulators of gene expression, widely conserved throughout eukaryotic genomes and essential for animal development. The main D. melanogaster anterior determinant, bicoid, is maternally transcribed, but it is not translated until early embryogenesis. We investigated the possibility that its translational repression during oogenesis is mediated by miRNA activity. We found that the bicoid 3’UTR contains a highly conserved, predicted binding site for miR-305. Our studies reveal that miR-305 regulates the translation of a reporter gene containing the bicoid 3’UTR in cell culture, and that miR-305 only partially contributes to bicoid mRNA translational repression during oogenesis. We also found that Processing bodies (P-bodies) in the egg chamber may play a role in stabilizing bicoid and other maternal transcripts. Here, we offer insights into the possible role of P-bodies and the miRNA pathway in the translational repression of bicoid mRNA during oogenesis.


Sign in / Sign up

Export Citation Format

Share Document