scholarly journals A comparison of single-cell trajectory inference methods

2019 ◽  
Vol 37 (5) ◽  
pp. 547-554 ◽  
Author(s):  
Wouter Saelens ◽  
Robrecht Cannoodt ◽  
Helena Todorov ◽  
Yvan Saeys
2020 ◽  
Author(s):  
Ziqi Zhang ◽  
Xiuwei Zhang

AbstractTrajectory inference methods are used to infer the developmental dynamics of a continuous biological process such as stem cell differentiation and cancer cell development. Most of the current trajectory inference methods infer cell developmental trajectories based on the transcriptome similarity between cells, using single cell RNA-Sequencing (scRNA-Seq) data. These methods are often restricted to certain trajectory structures like trees or cycles, and the directions of the trajectory can only be partly inferred when the root cell is provided. We present CellPaths, a single cell trajectory inference method that infers developmental trajectories by integrating RNA velocity information. CellPaths is able to find multiple high-resolution trajectories instead of one single trajectory from traditional trajectory inference methods, and the trajectory structure is no longer constrained to be of any specific topology. The direction information provided by RNA-velocity also allows CellPaths to automatically detect root cell and differentiation direction. We evaluate CellPaths on both real and synthetic datasets. The result shows that CellPaths finds more accurate and detailed trajectories compared to current state-of-the-art trajectory inference methods.


2018 ◽  
Author(s):  
Wouter Saelens ◽  
Robrecht Cannoodt ◽  
Helena Todorov ◽  
Yvan Saeys

AbstractUsing single-cell-omics data, it is now possible to computationally order cells along trajectories, allowing the unbiased study of cellular dynamic processes. Since 2014, more than 50 trajectory inference methods have been developed, each with its own set of methodological characteristics. As a result, choosing a method to infer trajectories is often challenging, since a comprehensive assessment of the performance and robustness of each method is still lacking. In order to facilitate the comparison of the results of these methods to each other and to a gold standard, we developed a global framework to benchmark trajectory inference tools. Using this framework, we compared the trajectories from a total of 29 trajectory inference methods, on a large collection of real and synthetic datasets. We evaluate methods using several metrics, including accuracy of the inferred ordering, correctness of the network topology, code quality and user friendliness. We found that some methods, including Slingshot, TSCAN and Monocle DDRTree, clearly outperform other methods, although their performance depended on the type of trajectory present in the data. Based on our benchmarking results, we therefore developed a set of guidelines for method users. However, our analysis also indicated that there is still a lot of room for improvement, especially for methods detecting complex trajectory topologies. Our evaluation pipeline can therefore be used to spearhead the development of new scalable and more accurate methods, and is available at github.com/dynverse/dynverse.To our knowledge, this is the first comprehensive assessment of trajectory inference methods. For now, we exclusively evaluated the methods on their default parameters, but plan to add a detailed parameter tuning procedure in the future. We gladly welcome any discussion and feedback on key decisions made as part of this study, including the metrics used in the benchmark, the quality control checklist, and the implementation of the method wrappers. These discussions can be held at github.com/dynverse/dynverse/issues.


2020 ◽  
Author(s):  
Yoonjee Kang ◽  
Denis Thieffry ◽  
Laura Cantini

AbstractNetworks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth.Here, we benchmark four single-cell network inference methods based on their reproducibility, i.e. their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis.GENIE3 results to be the most reproducible algorithm, independently from the single-cell sequencing platform, the cell type annotation system, the number of cells constituting the dataset, or the thresholding applied to the links of the inferred networks. In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET.


2020 ◽  
Author(s):  
Jianhao Peng ◽  
Ullas V. Chembazhi ◽  
Sushant Bangru ◽  
Ian M. Traniello ◽  
Auinash Kalsotra ◽  
...  

AbstractMotivationWith the use of single-cell RNA sequencing (scRNA-Seq) technologies, it is now possible to acquire gene expression data for each individual cell in samples containing up to millions of cells. These cells can be further grouped into different states along an inferred cell differentiation path, which are potentially characterized by similar, but distinct enough, gene regulatory networks (GRNs). Hence, it would be desirable for scRNA-Seq GRN inference methods to capture the GRN dynamics across cell states. However, current GRN inference methods produce a unique GRN per input dataset (or independent GRNs per cell state), failing to capture these regulatory dynamics.ResultsWe propose a novel single-cell GRN inference method, named SimiC, that jointly infers the GRNs corresponding to each state. SimiC models the GRN inference problem as a LASSO optimization problem with an added similarity constraint, on the GRNs associated to contiguous cell states, that captures the inter-cell-state homogeneity. We show on a mouse hepatocyte single-cell data generated after partial hepatectomy that, contrary to previous GRN methods for scRNA-Seq data, SimiC is able to capture the transcription factor (TF) dynamics across liver regeneration, as well as the cell-level behavior for the regulatory program of each TF across cell states. In addition, on a honey bee scRNA-Seq experiment, SimiC is able to capture the increased heterogeneity of cells on whole-brain tissue with respect to a regional analysis tissue, and the TFs associated specifically to each sequenced tissue.AvailabilitySimiC is written in Python and includes an R API. It can be downloaded from https://github.com/jianhao2016/[email protected], [email protected] informationSupplementary data are available at the code repository.


Cell ◽  
2014 ◽  
Vol 157 (3) ◽  
pp. 714-725 ◽  
Author(s):  
Sean C. Bendall ◽  
Kara L. Davis ◽  
El-ad David Amir ◽  
Michelle D. Tadmor ◽  
Erin F. Simonds ◽  
...  

2019 ◽  
Author(s):  
Valentine Svensson ◽  
Lior Pachter

Single cell RNA-seq makes possible the investigation of variability in gene expression among cells, and dependence of variation on cell type. Statistical inference methods for such analyses must be scalable, and ideally interpretable. We present an approach based on a modification of a recently published highly scalable variational autoencoder framework that provides interpretability without sacrificing much accuracy. We demonstrate that our approach enables identification of gene programs in massive datasets. Our strategy, namely the learning of factor models with the auto-encoding variational Bayes framework, is not domain specific and may be of interest for other applications.


2021 ◽  
Author(s):  
Philipp Weiler ◽  
Koen Van den Berge ◽  
Kelly Street ◽  
Simone Tiberi

Technological developments have led to an explosion of high-throughput single cell data, which are revealing unprecedented perspectives on cell identity. Recently, significant attention has focused on investigating, from single-cell RNA-sequencing (scRNA-seq) data, cellular dynamic processes, such as cell differentiation, cell cycle and cell (de)activation. Trajectory inference methods estimate a trajectory, a collection of differentiation paths of a dynamic system, by ordering cells along the paths of such a dynamic process. While trajectory inference tools typically work with gene expression levels, common scRNA-seq protocols allow the identification and quantification of unspliced pre-mRNAs and mature spliced mRNAs, for each gene. By exploiting the abundance of unspliced and spliced mRNA, one can infer the RNA velocity of individual cells, i.e., the time derivative of the gene expression state of cells. Whereas traditional trajectory inference methods reconstruct cellular dynamics given a population of cells of varying maturity, RNA velocity relies on a dynamical model describing splicing dynamics. Here, we initially discuss conceptual and theoretical aspects of both approaches, then illustrate how they can be combined together, and finally present an example use-case on real data.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zeying Wang ◽  
Yanru Wang ◽  
Taiyu Hui ◽  
Rui Chen ◽  
Yanan Xu ◽  
...  

Cashmere fineness is one of the important factors determining cashmere quality; however, our understanding of the regulation of cashmere fineness at the cellular level is limited. Here, we used single-cell RNA sequencing and computational models to identify 13 skin cell types in Liaoning cashmere goats. We also analyzed the molecular changes in the development process by cell trajectory analysis and revealed the maturation process in the gene expression profile in Liaoning cashmere goats. Weighted gene co-expression network analysis explored hub genes in cell clusters related to cashmere formation. Secondary hair follicle dermal papilla cells (SDPCs) play an important role in the growth and density of cashmere. ACTA2, a marker gene of SDPCs, was selected for immunofluorescence (IF) and Western blot (WB) verification. Our results indicate that ACTA2 is mainly expressed in SDPCs, and WB results show different expression levels. COL1A1 is a highly expressed gene in SDPCs, which was verified by IF and WB. We then selected CXCL8 of SDPCs to verify and prove the differential expression in the coarse and fine types of Liaoning cashmere goats. Therefore, the CXCL8 gene may regulate cashmere fineness. These genes may be involved in regulating the fineness of cashmere in goat SDPCs; our research provides new insights into the mechanism of cashmere growth and fineness regulation by cells.


Sign in / Sign up

Export Citation Format

Share Document