scholarly journals T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma

2022 ◽  
Author(s):  
Alexander X. Lozano ◽  
Aadel A. Chaudhuri ◽  
Aishwarya Nene ◽  
Antonietta Bacchiocchi ◽  
Noah Earland ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
pp. e001460 ◽  
Author(s):  
Xiuting Liu ◽  
Graham D Hogg ◽  
David G DeNardo

The clinical success of immune checkpoint inhibitors has highlighted the central role of the immune system in cancer control. Immune checkpoint inhibitors can reinvigorate anti-cancer immunity and are now the standard of care in a number of malignancies. However, research on immune checkpoint blockade has largely been framed with the central dogma that checkpoint therapies intrinsically target the T cell, triggering the tumoricidal potential of the adaptive immune system. Although T cells undoubtedly remain a critical piece of the story, mounting evidence, reviewed herein, indicates that much of the efficacy of checkpoint therapies may be attributable to the innate immune system. Emerging research suggests that T cell-directed checkpoint antibodies such as anti-programmed cell death protein-1 (PD-1) or programmed death-ligand-1 (PD-L1) can impact innate immunity by both direct and indirect pathways, which may ultimately shape clinical efficacy. However, the mechanisms and impacts of these activities have yet to be fully elucidated, and checkpoint therapies have potentially beneficial and detrimental effects on innate antitumor immunity. Further research into the role of innate subsets during checkpoint blockade may be critical for developing combination therapies to help overcome checkpoint resistance. The potential of checkpoint therapies to amplify innate antitumor immunity represents a promising new field that can be translated into innovative immunotherapies for patients fighting refractory malignancies.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A728-A728
Author(s):  
Shengqing Gu ◽  
Wubing Zhang ◽  
Xiaoqing Wang ◽  
Peng Jiang ◽  
Nicole Traugh ◽  
...  

BackgroundCancer immunotherapy, especially immune checkpoint blockade (ICB) therapy, is leading to a paradigm shift in cancer treatment, as a small percentage of cancer patients have obtained durable remission following ICB treatment. Successful ICB responses rely on cancer cells presenting antigens to the cell surface via the major histocompatibility complex (MHC), which activates antigen-specific T-lymphocytes to kill cancer cells. Type-I MHC (MHC-I) is wildly expressed in all cell types and mediates the interaction with cytotoxic CD8 T cells. However, over 65% of cancer patients are estimated to show defects in MHC-I-mediated antigen presentation, including downregulation of its expression that can lead to primary or acquired resistance to ICB therapy, and therapeutic strategies to effectively restore or boost MHC-I are limited.MethodsHere, we employed a CRISPR screening approach with dual-marker FACS sorting to identify factors that decouple the regulation of MHC-I and PD-L1. The experimentally validated target was used to generate a KO differential expression signature. Using this signature, we analyzed transcriptome data from drug perturbation studies to identify drugs that regulate MHC-I but not PD-L1. Finally, we validated the effect of the identified drug to enhance ICB response in a T-cell-dependent manner in vivo.ResultsCRISPR screens identified TRAF3, a suppressor of the NF-κB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout (Traf3-KO) gene expression signature is associated with better survival in ICB-naive cancer patients and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified SMAC mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T-cell-dependent killing, and adds to ICB efficacy. However, in cancer cells with high NF-κB activity, the effect of birinapant on MHC-I is weak, indicating context-dependent MHC-I regulation.ConclusionsIn summary, Traf3 deletion specifically upregulates MHC-I without inducing PD-L1 in response to various cytokines and sensitizes cancer cells to T-cell-driven cytotoxicity. The SMAC mimetic birinapant phenocopies Traf3-knockout and sensitizes MHC-I-low melanoma to ICB therapy. Further studies are needed to elucidate the context-dependencies of MHC-I regulation. Our findings provide preclinical rationale for treating some tumors expressing low MHC-I with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy.AcknowledgementsThis study was supported by grants from the NIH (R01CA234018 to XSL, R01AI137337 to BEG, P50CA101942-12 and P50CA206963 to GJF), Breast Cancer Research Foundation (BCRF-19-100 to XSL), Burroughs Wellcome Career Award in Medical Sciences (to BEG), and Sara Elizabeth O'Brien Trust Fellowship (to SG).We thank Drs. Kai Wucherpfennig and Deng Pan for their insightful suggestions on this study.Ethics ApprovalAll mice were housed in standard cage in Dana-Farber Cancer Institute Animal Resources Facility (ARF). All animal procedures were carried out under the ARF Institutional Animal Care and Use Committee (IACUC) protocol and were in accordance with the IACUC standards for the welfare of animals.


Author(s):  
Hazem E. Ghoneim ◽  
Yiping Fan ◽  
Ardiana Moustaki ◽  
Hossam Abdelsamed ◽  
Pradyot Dash ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e22012-e22012 ◽  
Author(s):  
Juan Vasquez ◽  
Anita Huttner ◽  
Lin Zhang ◽  
Asher Marks ◽  
Amy Chan ◽  
...  

e22012 Background: New treatments are needed to improve outcomes for pediatric gliomas. Immune checkpoint inhibitors are effective therapies in tumors with a high mutation burden that express multiple neo-antigens. However, for pediatric tumors that carry few mutations, there is a need to identify new antigenic targets of anti-tumor immunity. SOX2 is an embryonal stem cell antigen implicated in the biology of glioma initiating cells. Expression of SOX2 by pediatric glial tumors, and the capacity of the immune system in these patients to recognize SOX2, has not been studied. Methods: We examined the expression of SOX2 on paraffin-embedded tissue from pediatric glial tumors (n = 30). The presence of T cell immunity to SOX2 was examined in both blood and tumor-infiltrating T cells using antigen-dependent cytokine and T cell proliferation assays (n = 15). The nature of tumor-infiltrating immune cells in glial tumors (n = 4) was analyzed using single cell mass cytometry. Results: SOX2 is expressed by tumor cells but not surrounding normal tissue in all low grade gliomas (n = 15), high grade gliomas (n = 7), ependymomas (n = 3) and in 60% of oligodendrogliomas (n = 5). T cells against SOX2 can be detected in blood and tumor tissue in 33% of patients. CD4 and CD8 tumor infiltrating T-cells display a higher proportion of PD-1 expression compared to circulating T cells (p < 0.05). Glial CD4 and CD8 T cells are enriched for tissue resident memory phenotype (TRM; CD45RO+, CD69+, CCR7-) and the expression of PD-1 is primarily on these TRM cells (p < 0.05). A subset of CD4 and CD8 TRM cells also co-express multiple inhibitory checkpoints including PD-L1 and TIGIT. Glial tumors also contain NK cells with reduced expression of lytic granzyme (p < 0.05). Conclusions: Our data demonstrate in vivo immunogenicity of SOX2, which is specifically overexpressed on pediatric glial tumor cells. Our data also suggest that the TRM subset of tumor-infiltrating T cells may be key targets for immune checkpoint blockade, and harnessing tumor immunity will likely require the combined targeting of multiple inhibitory checkpoints. Future efforts to target SOX2 with dendritic cell vaccines combined with immune checkpoint blockade could provide effective tumor immunity and improve outcomes in pediatric brain tumors.


2018 ◽  
Author(s):  
Johannes Griss ◽  
Wolfgang Bauer ◽  
Christine Wagner ◽  
Margarita Maurer-Granofszky ◽  
Martin Simon ◽  
...  

Tumor associated inflammation predicts response to immune checkpoint blockade in human melanoma. Established mechanisms that underlie therapy response and resistance center on anti-tumor T cell responses. Here we show that tumor-associated B cells are vital to tumor associated inflammation. Autologous B cells were directly induced by melanoma conditioned medium, expressed pro- and anti-inflammatory factors, and differentiated towards a plasmablast-like phenotype in vitro. We could identify this phenotype as a distinct cluster of B cells in an independent public single-cell RNA-seq dataset from melanoma tumors. There, plasmablast-like tumor-associated B cells showed expression of CD8+T cell-recruiting chemokines such as CCL3, CCL4, CCL5 and CCL28. Depletion of tumor associated B cells in metastatic melanoma patients by anti-CD20 immunotherapy decreased overall inflammation and CD8+T cell numbers in the human melanoma TME. Conversely, the frequency of plasmablast-like B cells in pretherapy melanoma samples predicted response and survival to immune checkpoint blockade in two independent cohorts. Tumor-associated B cells therefore orchestrate and sustain tumor inflammation, recruit CD8+ T effector cells and may represent a predictor for response and survival to immune checkpoint blockade in human melanoma.


Sign in / Sign up

Export Citation Format

Share Document