SOX2 as a target for immunotherapy of pediatric gliomas.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e22012-e22012 ◽  
Author(s):  
Juan Vasquez ◽  
Anita Huttner ◽  
Lin Zhang ◽  
Asher Marks ◽  
Amy Chan ◽  
...  

e22012 Background: New treatments are needed to improve outcomes for pediatric gliomas. Immune checkpoint inhibitors are effective therapies in tumors with a high mutation burden that express multiple neo-antigens. However, for pediatric tumors that carry few mutations, there is a need to identify new antigenic targets of anti-tumor immunity. SOX2 is an embryonal stem cell antigen implicated in the biology of glioma initiating cells. Expression of SOX2 by pediatric glial tumors, and the capacity of the immune system in these patients to recognize SOX2, has not been studied. Methods: We examined the expression of SOX2 on paraffin-embedded tissue from pediatric glial tumors (n = 30). The presence of T cell immunity to SOX2 was examined in both blood and tumor-infiltrating T cells using antigen-dependent cytokine and T cell proliferation assays (n = 15). The nature of tumor-infiltrating immune cells in glial tumors (n = 4) was analyzed using single cell mass cytometry. Results: SOX2 is expressed by tumor cells but not surrounding normal tissue in all low grade gliomas (n = 15), high grade gliomas (n = 7), ependymomas (n = 3) and in 60% of oligodendrogliomas (n = 5). T cells against SOX2 can be detected in blood and tumor tissue in 33% of patients. CD4 and CD8 tumor infiltrating T-cells display a higher proportion of PD-1 expression compared to circulating T cells (p < 0.05). Glial CD4 and CD8 T cells are enriched for tissue resident memory phenotype (TRM; CD45RO+, CD69+, CCR7-) and the expression of PD-1 is primarily on these TRM cells (p < 0.05). A subset of CD4 and CD8 TRM cells also co-express multiple inhibitory checkpoints including PD-L1 and TIGIT. Glial tumors also contain NK cells with reduced expression of lytic granzyme (p < 0.05). Conclusions: Our data demonstrate in vivo immunogenicity of SOX2, which is specifically overexpressed on pediatric glial tumor cells. Our data also suggest that the TRM subset of tumor-infiltrating T cells may be key targets for immune checkpoint blockade, and harnessing tumor immunity will likely require the combined targeting of multiple inhibitory checkpoints. Future efforts to target SOX2 with dendritic cell vaccines combined with immune checkpoint blockade could provide effective tumor immunity and improve outcomes in pediatric brain tumors.

2020 ◽  
Vol 11 ◽  
Author(s):  
Kamira Maharaj ◽  
John J. Powers ◽  
Melanie Mediavilla-Varela ◽  
Alex Achille ◽  
Wael Gamal ◽  
...  

Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eμ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eμ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.


2021 ◽  
Author(s):  
Shirin Lak ◽  
Valérie Janelle ◽  
Anissa Djedid ◽  
Gabrielle Boudreau ◽  
Ann Brasey ◽  
...  

AbstractBackgroundThe stimulation and expansion of antigen-specific T cells ex vivo enables the targeting of a multitude of cancer antigens. However, clinical scale T-cell expansion from rare precursors requires repeated stimulations ex vivo leading to T-cell terminal effector differentiation and exhaustion that adversely impact therapeutic potential. We leveraged immune checkpoint blockade relevant to antigen-specific CD8+ human T cells to improve the expansion and function of T cells targeting clinically relevant antigens.MethodsA clinically-compliant protocol relying on peptide-pulsed monocyte-derived dendritic cells and cytokines was used to expand antigen-specific CD8+ targeting the oncogenic Epstein-Barr virus (EBV) and the tumor associated antigen (TAA) Wilms Tumor 1 (WT1) protein. The effects of antibody-mediated blockade of immune checkpoints applied to the cultures (T-cell expansion, phenotypes and function) were assessed at various time points. Genomic studies including single cell RNA (scRNA) sequencing and T-cell receptor sequencing were performed on EBV-specific T cells to inform about the impact of immune checkpoint blockade on the clonal distribution and gene expression of the expanded T cells.ResultsSeveral immune checkpoints were expressed early by ex vivo expanded antigen-specific CD8+ T cells, including PD-1 and TIM-3 with co-expression matching evidence of T-cell dysfunction as the cultures progressed. The introduction of anti-PD-L1 (expressed by the dendritic cells) and anti-TIM-3 antibodies in combination (but not individually) to the culture led to markedly improved antigen-specific T-cell expansion based on cell counts, fluorescent multimer staining and functional tests. This was not associated with evidence of T-cell dysfunction when compared to T cells expanded without immune checkpoint blockade. Genomics studies largely confirmed these results, showing that double blockade does not impart specific transcriptional programs or patterns on TCR repertoires. However, our data indicate that combined blockade may nonetheless alter gene expression in a minority of clonotypes and have donor-specific impacts.ConclusionsThe manufacturing of antigen-specific CD8+ T cells can be improved in terms of yield and functionality using blockade of TIM-3 and the PD-L1/PD-1 axis in combination. Overcoming the deleterious effects of multiple antigenic stimulations through PD-L1/TIM-3 blockade is a readily applicable approach for several adoptive-immunotherapy strategies.


2021 ◽  
Author(s):  
Lisa J. Sudmeier ◽  
Kimberly B. Hoang ◽  
Edjah K. Nduom ◽  
Andreas Wieland ◽  
Stewart G. Neill ◽  
...  

Despite improved outcomes with checkpoint blockade immunotherapy, patients with brain metastases have the worst prognosis among patients with metastatic cancer. Immune checkpoint blockade agents target inhibitory receptors, such as PD-1, on exhausted CD8+ T cells to restore their anti-cancer function. Many patients, however, either do not respond or progress after an initial response to immune checkpoint blockade, and distant intracranial failure is common despite excellent options for local treatment of brain metastasis. To develop more effective therapeutic strategies for the treatment of brain metastases, an understanding of the phenotype of brain metastasis-infiltrating CD8+ T cells is essential. Here we performed a detailed characterization of the CD8+ T cells contained in brain metastases. Brain metastases were densely infiltrated by CD8+ T cells; blood contamination of tumor samples was rare. Compared to patient-matched circulating cells, brain metastasis-infiltrating CD8+ T cells had a distinct phenotype characterized by more frequent expression of PD-1, with subpopulations defined by expression of additional co-inhibitory molecules and the residence marker CD69. Single cell RNA-sequencing identified four phenotypic subpopulations within brain metastasis-infiltrating PD-1+ CD8+ T cells. Two of these populations - a terminally-differentiated and a dividing population - were characterized by high expression of co-inhibitory molecules and lacked expression of progenitor markers such as TCF-1. There was significant T cell receptor (TCR) overlap between the terminally-differentiated and dividing populations, suggesting that the dividing cells give rise to the terminally-differentiated cells. There was minimal TCR overlap between these two populations and other brain metastasis-infiltrating PD-1+ CD8+ T cells. T cell clones from brain metastasis-infiltrating CD8+ T cells were rare in circulation, particularly clones from the terminally-differentiated and dividing populations. We systematically identified bystander CD8+ T cells specific for microbial antigens; these cells infiltrated brain metastases and expressed genes shared with exhausted progenitor CD8+ T cells, such as TCF7 and IL7R. We performed spatial transcriptomics on brain metastases and used a novel method to obtain TCR sequences from spatial transcriptomics data. These data revealed distinct niches within the TME defined by their gene expression patterns and cytokine profiles. Terminally-differentiated CD8+ T cells preferentially occupied niches within the tumor parenchyma. Together, our results show that antigen-specificity restricts the spatial localization, phenotypic states, and differentiation pathways available to CD8+ T cells within the brain metastasis TME.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3513-3513
Author(s):  
Jay Gunawardana ◽  
Muhammed B. Sabdia ◽  
Karolina Bednarska ◽  
Soi C. Law ◽  
Sandra Brosda ◽  
...  

Abstract Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) comprises 5% of all Hodgkin lymphomas (HL). Its biology remains poorly characterized. Like classical HL (cHL), it contains minimal malignant cells embedded within a T cell rich intra-tumoral microenvironment (TME). Unlike cHL, it can transform to diffuse large B cell lymphoma (DLBCL). Immune-checkpoint blockade is effective in cHL but has minimal activity in DLBCL. No data is currently available regarding the potential to reactivate host anti-tumoral activity via immune-checkpoint blockade in NLPHL. Diagnostic FFPE samples from 49 NLPHL patients retrospectively collected from 4 Australian centres were interrogated. Inclusion criteria were sample availability and centrally confirmed histological NLPHL. Characteristics were in line with the literature: median age 45 years, range 13-82 years; F:M 1:3.5; stage I/II 55%, III/IV 35% (10% stage unknown) with the majority of cases were of immuno-architectural types A or C. RNA was digitally quantified using the NanoString 770-gene PanCancer Immune panel. Multi-spectral immunofluorescent (mIF) microscopy, plasma soluble PD-1 quantification, cell sorting, T cell receptor (TCR) repertoire analysis and functional immuno-assays were also performed. Results were compared with samples from 38 cHL and 35 DLBCL patients. We initially compared gene expression of NLPHL and cHL, looking for molecular similarities and differences. Ten non-lymphomatous nodes (NLN) were included as controls. Unsupervised clustering showed all but 3 NLPHL cases segregated from the cHL cluster. All NLN congregated in a discrete sub-cluster. As expected, RNA analysis showed significant enrichment for CD20 in NLPHL and CD30 in HL. Volcano plots (Fig. 1a), corrected for false-discovery showed marked variation in gene expression. For NLPHL (vs. cHL) there were 105 upregulated and 337 down regulated genes. Strikingly, the most significantly differentially over-expressed genes in NLPHL were all T cell related (CD247: CD3 zeta chain; CD3D: CD3 delta chain; GZMK: granzyme K; EOMES: marker of CD8 + T cell tolerance; and the immune checkpoints PDCD1: encodes for PD-1; and TIGIT). CD8B expression was increased in NLPHL. For cHL, the most over-expressed genes included macrophage-derived chemokines CCL17 and CCL22. Gene set enrichment analysis revealed activation of the PD-L1 expression and PD-1 checkpoint pathway and 9 of the top 10 Gene Ontology (GO) term enrichment scores involved lymphocyte signalling in NLPHL (Fig. 1b). To better appreciate the impact of the relevant immune checkpoints on their signalling axis, we compared gene ratios for PD-1 and TIGIT receptors with their ligands (PD-L1/L2 and PVR, respectively). NLPHL showed the highest enrichment ratios of these signalling pathways vs. cHL, DLBCL and NLN (Fig. 1c). Although it is known that CD4 +PD-1 +T cells form rosettes around NLPHL cells, the differential cellular localization of immune proteins has not been compared between HL entities. Using mIF, the proportion of intra-tumoral PD-1 + was markedly higher for CD4 + (~7-fold; p&lt;0.0001) and CD8 + (~5-fold; p&lt;0.001) T cells in NLPHL. However, the proportion of T cells expressing LAG3 was similar. Soluble PD-1 was elevated for both NLPHL and cHL, indicating circulating blood is influenced by the TME. For both HL entities over 80% of circulating CD4 + and CD8 + T cells expressed PD-1 alone or in combination with TIGIT. TCR repertoire analysis of sorted T cell subsets showed large intra-tumoral clonal T cell expansions were also detectable in circulating T cells. T cell clones were predominantly PD1 +CD4 + T cells in both HL types. Finally, we developed a functional assay using PD-L1/PD-L2 expressing NLPHL and cHL cell lines. These were co-cultured with genetically engineered PD-1 +CD4 + T cells that express a luciferase reporter. Similar levels of heightened T cell activation were seen with immune-checkpoint blockade for both HL entities, indicating that immune-checkpoint inhibition may also be of benefit in NLPHL. In conclusion, our multi-faceted analysis of the immunobiological features of the TME in NLPHL, provides a compelling rationale for early phase clinical studies that incorporate immune-checkpoint blockade in NLPHL. Figure 1 Figure 1. Disclosures Hawkes: Bristol Myers Squib/Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Specialised Therapeutics: Consultancy; Merck KgA: Research Funding; Merck Sharpe Dohme: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Antigene: Membership on an entity's Board of Directors or advisory committees; Regeneron: Speakers Bureau; Janssen: Speakers Bureau; Gilead: Membership on an entity's Board of Directors or advisory committees; Astra Zeneca: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Roche: Membership on an entity's Board of Directors or advisory committees, Other: Travel and accommodation expenses, Research Funding, Speakers Bureau. Swain: Janssen: Other: Travel expenses paid; Novartis: Other: Travel expenses paid. Keane: BMS: Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy; Karyopharm: Consultancy; MSD: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Talaulikar: Takeda: Honoraria, Research Funding; Amgen: Honoraria, Research Funding; Jansenn: Honoraria, Research Funding; Roche: Honoraria, Research Funding; EUSA Pharma: Honoraria, Research Funding. Gandhi: janssen: Research Funding; novartis: Honoraria.


2020 ◽  
Vol 8 (2) ◽  
pp. e001066 ◽  
Author(s):  
M Hope Robinson ◽  
Juan Vasquez ◽  
Akhilesh Kaushal ◽  
Tobey J MacDonald ◽  
José E Velázquez Vega ◽  
...  

Brain tumors are the leading cause of cancer-related mortality in children and have distinct genomic and molecular features compared with adult glioma. However, the properties of immune cells in these tumors has been vastly understudied compared with their adult counterparts. We combined multiplex immunofluorescence immunohistochemistry coupled with machine learning and single-cell mass cytometry to evaluate T-cells infiltrating pediatric glial tumors. We show that low-grade tumors are characterized by greater T-cell density compared with high-grade glioma (HGG). However, even among low-grade tumors, T-cell infiltration can be highly variable and subtype-dependent, with greater T-cell density in pleomorphic xanthoastrocytoma and ganglioglioma. CD3+ T-cell infiltration correlates inversely with the expression of SOX2, an embryonal stem cell marker commonly expressed by glial tumors. T-cells within both HGG and low-grade glioma (LGG) exhibit phenotypic heterogeneity and tissue-resident memory T-cells consist of distinct subsets of CD103+ and TCF1+ cells that exhibit distinct spatial localization patterns. TCF1+ T-cells are located closer to the vessels while CD103+ resident T-cells reside within the tumor further away from the vasculature. Recurrent tumors are characterized by a decline in CD103+ tumor-infiltrating T-cells. BRAFV600E mutation is immunogenic in children with LGG and may serve as a target for immune therapy. These data provide several novel insights into the subtype-dependent and grade-dependent changes in immune architecture in pediatric gliomas and suggest that harnessing tumor-resident T-cells may be essential to improve immune control in glioma.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi124-vi125
Author(s):  
Elizabeth Ogando-Rivas ◽  
Changlin Yang ◽  
Paul Castillo ◽  
Anjelika Dechkovskaia ◽  
Duane Mitchell

Abstract BACKGROUND Despite aggressive treatments, GBM continues to have unacceptably high mortality rates. Immune-checkpoint blockade and ACT have shown excellent results in other solid tumors, especially in melanoma. Unfortunately, these results have not been extrapolated to GBM. We have developed a novel platform for ACT using tumor mRNA-pulsed dendritic cells(DCs) to in-vitro expand polyclonal populations of tumor-reactive T-cells. This platform has shown promising effects in preclinical brain tumor models (Flores et al OncoImmunology 2015, Wildes et al CCR 2018, Flores et al NatureComm 2018) and being evaluated in clinical trials at UF Health (NCT02465268,NCT03334305). STUDY OBJECTIVE Evaluate whether immune-checkpoint blockade during ex-vivo expansion of antigen-specific T-cells impact their use in ACT. METHODS CMVpp65 was used as model antigen for in-vitro activation of T-cells. Mature pp65 mRNA-pulsed DCs from CMV+ healthy donors were co-cultured with T-cells in IL2-containing medium for 15days. We tested four checkpoint inhibitor groups: PD1(n= 6), PDL1(n= 4), TIM3(n= 7) and PD1+TIM3(n= 6) that were compared with non-blockade group, respectively. Checkpoint blockade was performed every 3days. T-cell proliferation, immune-phenotyping, and IFN-g release were analyzed. RESULTS Cell proliferation was lower in all the blockade groups but significantly lower in the TIM3 (p= 0.03) and TIM3+PD1 (p= 0.01) blockade groups. TIM3 expression was significantly lower in the TIM3 (p= 0.006) and PD1+TIM3 blockade groups (p= 0.0001). There was a trend of reduced pp65 tetramer positive in the TIM3 and PD1+TIM3 blockade groups (PD1+TIM3 subgroup at 3mcg/mL, p= 0.02) and lower INFg release in the TIM3 and PD1+TIM3 blockade groups. CONCLUSION The exact role of checkpoints during expansion of T-cells for ACT is not well understood. In our study checkpoint blockade with PD-1 or TIM-3 alone or in combination did not enhance T-cell expansion or function, in fact, appeared to have an inhibitory effect on measured parameters. Our results suggest that TIM-3 may have an activating role in our system.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 968
Author(s):  
Lucas A. Horn ◽  
Kristen Fousek ◽  
Duane H. Hamilton ◽  
James W. Hodge ◽  
John A. Zebala ◽  
...  

Resistance to immune checkpoint blockade therapy has spurred the development of novel combinations of drugs tailored to specific cancer types, including non-inflamed tumors with low T-cell infiltration. Cancer vaccines can potentially be utilized as part of these combination immunotherapies to enhance antitumor efficacy through the expansion of tumor-reactive T cells. Utilizing murine models of colon and mammary carcinoma, here we investigated the effect of adding a recombinant adenovirus-based vaccine targeting tumor-associated antigens with an IL-15 super agonist adjuvant to a multimodal regimen consisting of a bifunctional anti-PD-L1/TGF-βRII agent along with a CXCR1/2 inhibitor. We demonstrate that the addition of vaccine induced a greater tumor infiltration with T cells highly positive for markers of proliferation and cytotoxicity. In addition to this enhancement of cytotoxic T cells, combination therapy showed a restructured tumor microenvironment with reduced Tregs and CD11b+Ly6G+ myeloid cells. Tumor-infiltrating immune cells exhibited an upregulation of gene signatures characteristic of a Th1 response and presented with a more diverse T-cell receptor (TCR) repertoire. These results provide the rationale for the addition of vaccine-to-immune checkpoint blockade-based therapies being tested in the clinic.


2021 ◽  
Vol 13 (588) ◽  
pp. eaaz6804
Author(s):  
Weiqin Yang ◽  
Yu Feng ◽  
Jingying Zhou ◽  
Otto Ka-Wing Cheung ◽  
Jianquan Cao ◽  
...  

Insufficient T cell infiltration into noninflamed tumors, such as hepatocellular carcinoma (HCC), restricts the effectiveness of immune-checkpoint blockade (ICB) for a subset of patients. Epigenetic therapy provides further opportunities to rewire cancer-associated transcriptional programs, but whether and how selective epigenetic inhibition counteracts the immune-excluded phenotype remain incompletely defined. Here, we showed that pharmacological inhibition of histone deacetylase 8 (HDAC8), a histone H3 lysine 27 (H3K27)–specific isozyme overexpressed in a variety of human cancers, thwarts HCC tumorigenicity in a T cell–dependent manner. The tumor-suppressive effect of selective HDAC8 inhibition was abrogated by CD8+ T cell depletion or regulatory T cell adoptive transfer. Chromatin profiling of human HDAC8-expressing HCCs revealed genome-wide H3K27 deacetylation in 1251 silenced enhancer-target gene pairs that are enriched in metabolic and immune regulators. Mechanistically, down-regulation of HDAC8 increased global and enhancer acetylation of H3K27 to reactivate production of T cell–trafficking chemokines by HCC cells, thus relieving T cell exclusion in both immunodeficient and humanized mouse models. In an HCC preclinical model, selective HDAC8 inhibition increased tumor-infiltrating CD8+ T cells and potentiated eradication of established hepatomas by anti–PD-L1 therapy without evidence of toxicity. Mice treated with HDAC8 and PD-L1 coblockade were protected against subsequent tumor rechallenge as a result of the induction of memory T cells and remained tumor-free for greater than 15 months. Collectively, our study demonstrates that selective HDAC8 inhibition elicits effective and durable responses to ICB by co-opting adaptive immunity through enhancer reprogramming.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4416-4416
Author(s):  
Aidi Gu ◽  
Huaxian Ma ◽  
Xiaorui Zhang ◽  
Prerna Malaney ◽  
Miguel Gallardo ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is often driven by aberrant activation of the B-cell receptor signaling pathway. We and others have shown in preclinical animal models as well as human clinical trials that the BTK inhibitor, ibrutinib, is effective in reducing CLL tumor burden and improving survival rates in both humans and mice. Preclinical studies also suggest that BTK inhibitors likely act not only through their direct effect on CLL tumor cells but also by alleviating immunosuppression in the tumor microenvironment through BTK inhibition in myeloid-derived suppressor cells. Additionally, we have previously demonstrated that CLL cells are susceptible to cytotoxic killing by T cells targeting the aberrantly expressed TCL1 oncoprotein (Weng et al. Blood 2012). Therefore, we hypothesized that the combination of BTK-pathway inhibition in conjunction with activation of antigen-specific T-cells by immune checkpoint blockade will be a synergistic therapeutic strategy. Here, we examined the effect of acalabrutinib (previously known as ACP-196), a selective BTK inhibitor with limited effect on other kinases, alone or in combination with immune checkpoint blockade in a mouse model of CLL. Eµ-TCL1 mice, which overexpress TCL1 in B-cells, were used as a model of CLL. We generated cohorts of Eµ-TCL1 mice and treated them with anti-PD-1 antibody (n = 18), acalabrutinib (n = 20), and acalabrutinib+anti-PD-1 antibody (n= 19). Treatment cohorts had a significant reduction in CD5+CD19+ tumor cells in peripheral blood and spleens as compared to vehicle-treated mice (n =16) (p <0.05). However, the most pronounced anti-tumor effects were observed in mice treated with acalabrutinib alone. In fact, MRI imaging of splenic volume and flow cytometry of CD5+CD19+ cells during the treatment phase revealed that acalabrutinib monotherapy was superior to the combinatorial therapy. Even more surprising was the fact that while anti-PD-1 and acalabrutinib monotherapies provided an improvement in survival compared to vehicle treatment (p = 0.05 and p < 0.0001, respectively), the combination of these two agents actually diminished overall survival (p = 0.77). Shockingly, histopathological analyses of tumors from these acalabrutinib+anti-PD-1 treated mice revealed a significant increase in lymph node involvement and tumors with a high mitotic index. Consistent with this, we observed that treatment of CD5+CD19+ tumor cells from Eµ-TCL1 transgenic mice in vitro with anti-PD-1 antibody plus acalabrutinib markedly increased the proliferative index as measured by EdU incorporation assay compared to acalabrutinib treated group. To understand the molecular events responsible for the observed acalabrutinib+anti-PD-1 hyperproliferative phenotypes, we are examining complementary pathways that may be aberrantly activated/repressed by this combination. Currently, we have identified expression changes in both the NFkb and PKC signaling pathways when these agents are used in combination, and are working to understand how this combination may impact tumor progression. We are also assessing the possibility that anti-PD-1 interferes with the anti-tumorigenic effect of acalabrutinib by enhancing the BCR signaling pathway in CLL tumor cells. In summary, our results demonstrate that the selective BTK inhibitor, acalabrutinib greatly enhances the survival of Eµ-TCL1 mice compared to either vehicle or ibrutinib alone. Surprisingly, we found that the combination of anti-PD-1 antibody + acalabrutinib therapy is actually detrimental in this CLL model and results in a hyperprogressor phenotype. Therefore, results from ongoing clinical trials evaluating combination strategies of anti-PD-1 antibody therapy plus BTK inhibitor need to be analyzed carefully to ensure that this combination is not leading to a similar hyperprogressor phenotype in patients. The results provided here offer some initial insights into the potential mechanisms of the "hyperprogressive" phenotypes following anti-PD-1 treatment and may highlight pathways that could be useful in blocking these deleterious effects. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Lihua Liu ◽  
Mi Ae Lim ◽  
Seung-Nam Jung ◽  
Chan Oh ◽  
Ho-Ryun Won ◽  
...  

Abstract BackgroundDespite recent advances in understanding the complex immunologic dysfunction in the tumor microenvironment (TME), fewer than 20% of patients with head and neck squamous cell carcinoma (HNSCC) respond to immune checkpoint blockade (ICB). Thus, it is important to understand how inhibitory IC receptors maintain the suppressed dysfunctional TME, and to develop more effective combination immunotherapy. This study evaluated the immune-modulating effects of Curcumin, which has well-established anti-cancer and chemopreventive properties, and its long-term safety as a phytochemical drug.MethodsWe carried out the western blot and small interfering RNA (siRNA) transfection assayto evaluate the effects of Curcumin on IC ligands and IC ligands function in HNSCC. Through T-cell cytotoxicity assay and measurements of cytokine secretion, we assessed the effects of combination of Curcumin with programmed death-ligand 1 (PD-L1) Ab on cancer cell killing. Flow cytometry were used to analyze the effects of Curcumin on the expression of programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain3 (TIM-3) on CD4, CD8 and Treg. Immunofluorescence, immunohistochemistry and western blot were used to detecte the cytokine (IFN-γ, Granzyme B), IC receptors (PD-1 and TIM-3) and its ligands (PD-L1, PD-L2, Galectin-9) in xenograft mouse model and 4-nitroquinoline-1-oxide (4-NQO) oral cancer model. ResultsWe found that Curcumin decreased the expression of IC ligands such as PD-L1, PD-L2, and Galectin-9 in HNSCC, leading to regulation of epithelial-to-mesenchymal transition-associated tumor invasion. Curcumin also effectively restored the ability of CD8+ cytotoxic T cells to lyse cancer cells. To evaluate the effect of Curcumin on the TME further, the 4-NQO oral cancer model was used. Curcumin increased T-cell proliferation, tumor-infiltrating lymphocytes (TILs), and effector cytokines, and decreased the expression of PD-1, TIM-3, suppressive IC receptors and their ligands (PD-L1, PD-L2, and Galectin-9) in the TME, implying reinvigoration of the exhausted CD8+ T cells. In addition, Curcumin inhibited expression of CD4+CD25+FoxP3+ Treg cells as well as PD-1 and TIM-3. ConclusionsThese results show that Curcumin reinvigorates defective T cells via multiple (PD-1 and TIM-3) and multi-level (IC receptors and its ligands) IC axis suppression, thus providing a rationale to combine Curcumin with conventional targeted therapy or ICB as a multi-faceted approach for treating patients with HNSCC.


Sign in / Sign up

Export Citation Format

Share Document