TAp63 as a guardian of female germ line integrity

2018 ◽  
Vol 25 (3) ◽  
pp. 201-202
Author(s):  
Wa Xian ◽  
Frank McKeon
Keyword(s):  
Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1227-1244 ◽  
Author(s):  
Steffi Kuhfittig ◽  
János Szabad ◽  
Gunnar Schotta ◽  
Jan Hoffmann ◽  
Endre Máthé ◽  
...  

Abstract The vast majority of the >100 modifier genes of position-effect variegation (PEV) in Drosophila have been identified genetically as haplo-insufficient loci. Here, we describe pitkinDominant (ptnD), a gain-of-function enhancer mutation of PEV. Its exceptionally strong enhancer effect is evident as elevated spreading of heterochromatin-induced gene silencing along euchromatic regions in variegating rearrangements. The ptnD mutation causes ectopic binding of the SU(VAR)3-9 heterochromatin protein at many euchromatic sites and, unlike other modifiers of PEV, it also affects stable position effects. Specifically, it induces silencing of white+ transgenes inserted at a wide variety of euchromatic sites. ptnD is associated with dominant female sterility. +/+ embryos produced by ptnD/+ females mated with wild-type males die at the end of embryogenesis, whereas the ptnD/+ sibling embryos arrest development at cleavage cycle 1-3, due to a combined effect of maternally provided mutant product and an early zygotic lethal effect of ptnD. This is the earliest zygotic effect of a mutation so far reported in Drosophila. Germ-line mosaics show that ptn+ function is required for normal development in the female germ line. These results, together with effects on PEV and white+ transgenes, are consistent with the hypothesis that the ptn gene plays an important role in chromatin regulation during development of the female germ line and in early embryogenesis.


2006 ◽  
Vol 8 (1) ◽  
pp. 8-8
Author(s):  
Magdalena Skipper
Keyword(s):  

1994 ◽  
Vol 14 (10) ◽  
pp. 6809-6818
Author(s):  
M D Garfinkel ◽  
J Wang ◽  
Y Liang ◽  
A P Mahowald

The Drosophila melanogaster shavenbaby (svb)-ovo gene region is a complex locus, containing two distinct but comutable genetic functions. ovo is required for survival and differentiation of female germ line cells and plays a role in germ line sex determination. In contrast, svb is required in both male and female embryos for the production of epidermal locomotor and sensory structures. Sequences required for the two genetic functions are partially overlapping. ovo corresponds to a previously described germ line-dependent 5.0-kb poly(A)+ mRNA that first appears in the germarium and accumulates in nurse cells during oogenesis. The 5.0-kb mRNA is stored in the egg, but it is rapidly lost in the embryos except for its continued presence in the germ line precursor pole cells. The ovo mRNA predicts a 1,028-amino-acid 110.6-kDa protein homologous with transcription factors. We have identified an embryonic mRNA, 7.1 kb in length, that contains exons partially overlapping those of the 5.0-kb poly(A)+ mRNA. The spatial distribution of this newly discovered transcript during midembryogenesis suggests that it corresponds to the svb function. The arrangement of exons common to the 5.0- and 7.1-kb mRNAs suggests that the Ovo and Svb proteins share DNA-binding specificity conferred by four Cys2-His2 zinc finger motifs but differ functionally in their capacity to interact with other components of the transcription machinery.


Genetics ◽  
1983 ◽  
Vol 105 (2) ◽  
pp. 309-325
Author(s):  
D Busson ◽  
M Gans ◽  
K Komitopoulou ◽  
M Masson

ABSTRACT Three dominant female-sterile mutations were isolated following ethyl methanesulfonate (EMS) mutagenesis. Females heterozygous for two of these mutations show atrophy of the ovaries and produce no eggs (ovoD  1) or few eggs (ovoD  2); females heterozygous for the third mutation, ovoD  3, lay flaccid eggs. All three mutations are germ line-dependent and map to the cytological region 4D-E on the X chromosome; they represent a single allelic series. Two doses of the wild-type allele restore fertility to females carrying ovoD  3 and ovoD  2, but females carrying ovoD  1 and three doses of the wild-type allele remain sterile. The three mutations are stable in males but are capable of reversion in females; reversion of the dominant mutations is accompanied by the appearance, in the same region, of a recessive mutation causing female sterility. We discuss the utility of these mutations as markers of clones induced in the female germ line by mitotic recombination as well as the nature of the mutations.


2018 ◽  
Vol 19 (9) ◽  
pp. 2841 ◽  
Author(s):  
Marketa Koncicka ◽  
Anna Tetkova ◽  
Denisa Jansova ◽  
Edgar Del Llano ◽  
Lenka Gahurova ◽  
...  

The rate of chromosome segregation errors that emerge during meiosis I in the mammalian female germ line are known to increase with maternal age; however, little is known about the underlying molecular mechanism. The objective of this study was to analyze meiotic progression of mouse oocytes in relation to maternal age. Using the mouse as a model system, we analyzed the timing of nuclear envelope breakdown and the morphology of the nuclear lamina of oocytes obtained from young (2 months old) and aged females (12 months old). Oocytes obtained from older females display a significantly faster progression through meiosis I compared to the ones obtained from younger females. Furthermore, in oocytes from aged females, lamin A/C structures exhibit rapid phosphorylation and dissociation. Additionally, we also found an increased abundance of MPF components and increased translation of factors controlling translational activity in the oocytes of aged females. In conclusion, the elevated MPF activity observed in aged female oocytes affects precocious meiotic processes that can multifactorially contribute to chromosomal errors in meiosis I.


Sign in / Sign up

Export Citation Format

Share Document