scholarly journals The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongmiao Wu ◽  
Linkun Wu ◽  
Quan Zhu ◽  
Juanying Wang ◽  
Xianjin Qin ◽  
...  
1964 ◽  
Vol 29 (5) ◽  
pp. 555-564 ◽  
Author(s):  
E. G. HEISLER ◽  
JAMES SICILIANO ◽  
C. F. WOODWARD ◽  
W. L. PORTER
Keyword(s):  

Author(s):  
Abdulmahdi S.ALansari ◽  
Muhammad M.Yassin ◽  
Mahdi W.Seheib

This study was conducted to evaluation the role of the organic acids in the phosphorus fractions in silty clay loam texture. The laboratoryexperiment was conducted by adding the organic acids (Humic acid ,Citric acid ,Oxalic acid , Malic acid ,Acetic acid and Lactic acid )to the fertilized soil with conc. super phosphate fertilizer with 100 kg h-1 level with concentrations (0,15,30,45 and60)mg L-1,except Humic acid (500,1000,1500 and 2000) mg L-1.The soil was incubated at 30 C for 14,28,42,56 and 70 days period and the keep of field capacity about of incubation period during the daily weight.Amount of available ,mineral ,organic and total phosphorus after each incubated period were measured. The results showed that theaddition of organic acids of Humic acid ,Citric acid ,Oxalic acid and Malic acid were caused to increaseamount of available ,mineral ,organic and constant of total phosphorus in fertilized soil with conc. super phosphate fertilizer and increased its amount with increasing of organic acid concentration and better of Humic acid 2000mg L-1 significanton all the treatments .The results of the study that theaddition of organic acids were caused to increase amount of available and mineral phosphorus with increasing of incubation period and constant amount of total phosphorus and decreasing of organic phosphorus amount and available for only soil and only fertilizer treatment during increasing of incubation period .The organic acids can be arranged according to its ability toincrease the availabilityof the phosphorus as follow :


Author(s):  
Hana Kaňová ◽  
Joffrey Carre ◽  
Valerie Vranová ◽  
Klement Rejšek ◽  
Pavel Formánek

This study was conducted to determine the composition of sugars and organic acids in root exudates of Miscanthus × Giganteus and to find out if microorganisms of the rhizospheric soil are limited by mi­ne­ral nutrients. The following sugars and organic acids were determined in root exudates of this plant: glucose, saccharose, and acids such as succinic, propionic, citric, tartaric, malic, oxalic, ascorbic, acetic and fumaric. Respiration of soil from rhizosphere of Miscanthus × Giganteus was found to be limited by N, K and Ca. Respiration rate after application of mineral compounds increased in following orther: nitrate > calcium > potassium > ammonium, giving approx. 165, 99, 52 and 31 % increase compared to control. Further research is necessary to determine the role of plant nutrients from the point of their limitations for rhizosphere microorganisms, to broader very rare knowledges in this topic, especially for polluted soils to stimulate efficiency of phytoremediations.


2019 ◽  
Author(s):  
Hao Ji ◽  
Xiameng Dong ◽  
Kailun Zhang ◽  
Libo Jin ◽  
Renyi Peng ◽  
...  

Abstract BackgroundThe non-conventional yeast Pichia kudriavzevii possesses a unique ability to tolerate various environmental stresses particularly low-pH stress. Thus, it is considered to be a promising biotechnological host for the production of various organic acids under low-pH conditions. However, little is known about the low-pH stress response in P. kudriavzevii, which significantly restricts its future development. ResultsIn this study, P. kudriavzevii JLY1107 showed great tolerance to low-pH stress, but its cell aggregation upon acidic conditions is unfavorable for the development of low-pH fermentation. To explore the molecular basis, we conducted RNA-Seq to compare global gene expression in response to low-pH. Among the 429 differentially expressed genes, the genes associated with regulation of membrane lipid composition, filamentous growth and arginine metabolism were selected for in-depth discussions. The up-regulation of genes associated with arginine uptake and degradation suggests a potential role of arginine in response to low-pH strsss. We therefore present data supporting the hypothesis that P. kudriavzevii maintains intracellular homeostasis by using the ammonia produced by arginine catabolism. Furthermore, external addition of arginine significantly enhances growth and reduces cell aggregation of P. kudriavzevii under low-pH conditions.ConclusionsArginine was demonstrated to be a promising molecule for improving cell growth and preventing cell aggregation under extremely low-pH conditions. Our study is a step towards developing the non-conventional yeast P. kudriavzevii as a platform host for the production of organic acids under low-pH conditions.


Sign in / Sign up

Export Citation Format

Share Document